ARKODE: A Flexible IVP Solver Infrastructure for One-step Methods

被引:7
|
作者
Reynolds, Daniel R. [1 ]
Gardner, David J. [2 ]
Woodward, Carol S. [2 ]
Chinomona, Rujeko [3 ]
机构
[1] Southern Methodist Univ, Dept Math, Dallas, TX 75275 USA
[2] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, 7000 East Ave, Livermore, CA 75275 USA
[3] Temple Univ, Dept Math, 1805 North Broad St, Philadelphia, PA 19177 USA
来源
关键词
ODEs; adaptive integration; additive Runge-Kutta methods; ImEx methods; multirate methods; RUNGE-KUTTA SCHEMES; CONTROL-THEORETIC TECHNIQUES; STRONG STABILITY; NUMERICAL-SOLUTION; TIME INTEGRATION; SELECTION; SYSTEMS; H-2;
D O I
10.1145/3594632
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We describe the ARKODE library of one-step time integration methods for ordinary differential equation (ODE) initial-value problems (IVPs). In addition to providing standard explicit and diagonally implicit Runge-Kutta methods, ARKODE supports one-step methods designed to treat additive splittings of the IVP, including implicit-explicit (ImEx) additive Runge-Kutta methods and multirate infinitesimal (MRI) methods. We present the role of ARKODE within the SUNDIALS suite of time integration and nonlinear solver libraries, the core ARKODE infrastructure for utilities common to large classes of one-step methods, as well as its use of "time stepper" modules enabling easy incorporation of novel algorithms into the library. Numerical results show example problems of increasing complexity, highlighting the algorithmic flexibility afforded through this infrastructure, and include a larger multiphysics application leveraging multiple algorithmic features from ARKODE and SUNDIALS.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] One-Step Methods to Fabricate Durable Superhydrophobic Coatings for Flexible Electronic Sensors
    Liu, Xiang
    Chen, Kai
    Zhang, Dekun
    Guo, Zhiguang
    COATINGS, 2021, 11 (01) : 1 - 15
  • [2] MULTISTEP METHODS ARE ESSENTIALLY ONE-STEP METHODS
    KIRCHGRABER, U
    NUMERISCHE MATHEMATIK, 1986, 48 (01) : 85 - 90
  • [3] BLOCK IMPLICIT ONE-STEP METHODS
    WATANABE, DS
    MATHEMATICS OF COMPUTATION, 1978, 32 (142) : 405 - 414
  • [4] BLOCK IMPLICIT ONE-STEP METHODS
    SHAMPINE, LF
    WATTS, HA
    MATHEMATICS OF COMPUTATION, 1969, 23 (108) : 731 - &
  • [5] INVARIANT CURVES OF ONE-STEP METHODS
    EIROLA, T
    BIT, 1988, 28 (01): : 113 - 122
  • [6] One-Step Fabrication of Flexible Bioinspired Superomniphobic Surfaces
    Zhang, Zhonggang
    Ma, Binghe
    Ye, Tao
    Gao, Wei
    Pei, Guangyao
    Luo, Jian
    Deng, Jinjun
    Yuan, Weizheng
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (34) : 39665 - 39672
  • [7] One-step optogenetics with multifunctional flexible polymer fibers
    Park, Seongjun
    Guo, Yuanyuan
    Jia, Xiaoting
    Choe, Han Kyoung
    Grena, Benjamin
    Kang, Jeewoo
    Park, Jiyeon
    Lu, Chi
    Canales, Andres
    Chen, Ritchie
    Yim, Yeong Shin
    Choi, Gloria B.
    Fink, Yoel
    Anikeeva, Polina
    NATURE NEUROSCIENCE, 2017, 20 (04) : 612 - +
  • [8] One-step optogenetics with multifunctional flexible polymer fibers
    Seongjun Park
    Yuanyuan Guo
    Xiaoting Jia
    Han Kyoung Choe
    Benjamin Grena
    Jeewoo Kang
    Jiyeon Park
    Chi Lu
    Andres Canales
    Ritchie Chen
    Yeong Shin Yim
    Gloria B Choi
    Yoel Fink
    Polina Anikeeva
    Nature Neuroscience, 2017, 20 : 612 - 619
  • [9] One-step Stochastization Methods for Open Systems
    Korolkova, Anna
    Kulyabov, Dmitry
    MATHEMATICAL MODELING AND COMPUTATIONAL PHYSICS 2019 (MMCP 2019), 2020, 226
  • [10] A class of multiderivative hybrid one-step methods
    Yang F.-J.
    Chen X.-M.
    Zhang A.-G.
    Acta Mathematicae Applicatae Sinica, 2002, 18 (3) : 481 - 488