Pore network modeling of a microporous layer for polymer electrolyte fuel cells under wet conditions

被引:4
|
作者
Nakajima, Hironori [1 ,2 ]
Iwasaki, Shintaro [2 ]
Kitahara, Tatsumi [1 ,2 ]
机构
[1] Kyushu Univ, Fac Engn, Dept Mech Engn, 744,Motooka,Nishi Ku, Fukuoka 8190395, Japan
[2] Kyushu Univ, Grad Sch Engn, Dept Hydrogen Energy Syst, 744,Motooka,Nishi Ku, Fukuoka 8190395, Japan
关键词
Microporous layer; Pore network model; Pore size distribution; Liquid saturation; Wetting liquid; Effective diffusion coefficient; GAS-DIFFUSION LAYERS; WATER TRANSPORT; PERFORMANCE ENHANCEMENT; PEFC; MANAGEMENT; FLOW;
D O I
10.1016/j.jpowsour.2023.232677
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The gas diffusion layers (GDLs) of polymer electrolyte fuel cells have been developed with applying microp-orous layers (MPLs) in their catalyst layer (CL) side to alleviate the accumulation of liquid water in the CL for oxygen transport to the cathode CL. A three-dimensional porous structure of our in-house hydrophobic MPL is numerically modeled with a pore network model (PNM). The convective air permeability and oxygen diffusivity, which depend on liquid saturation, are evaluated. To construct the PNM, focused ion beam scanning electron microscopy (FIB-SEM) is used to derive the pore size distribution (PSD). The model is ex-situ validated through air permeability and oxygen diffusivity tests with controlled saturation of non-volatile wetting liquid that is stable in the hydrophobic MPL. Oxygen diffusivity of the MPL is obtained by identifying the diffusion resistances of the concentration boundary layers and GDL substrate in the tests. The model predicts the effects of liquid water saturation in the MPL on the air and liquid water permeations, and the oxygen diffusion, and thus can be used to design optimal PSDs for practical cells.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Microporous Layer Degradation in Polymer Electrolyte Membrane Fuel Cells
    Liu, Hang
    George, Michael G.
    Ge, Nan
    Muirhead, Daniel
    Shrestha, Pranay
    Lee, Jongmin
    Banerjee, Rupak
    Zeis, Roswitha
    Messerschmidt, Matthias
    Scholta, Joachim
    Krolla, Peter
    Bazylak, Aimy
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (06) : F3271 - F3280
  • [2] Performance of polymer electrolyte fuel cell under wet/dry conditions with hydrophilic and hydrophobic electrospun microporous layers
    Li, Xin
    Liu, Ruiliang
    Yao, Ming
    Zhang, Jianbo
    Liu, Yong
    JOURNAL OF POWER SOURCES, 2022, 545
  • [3] On the gas permeability of the microporous layer used in polymer electrolyte fuel cells
    Orogbemi, O. M.
    Ingham, D. B.
    Ismail, M. S.
    Hughes, K. J.
    Ma, L.
    Pourkashanian, M.
    JOURNAL OF THE ENERGY INSTITUTE, 2018, 91 (06) : 894 - 901
  • [4] Pore network modeling of fibrous gas diffusion layers for polymer electrolyte membrane fuel cells
    Gostick, Jeff T.
    Ioannidis, Marios A.
    Fowler, Michael W.
    Pritzker, Mark D.
    JOURNAL OF POWER SOURCES, 2007, 173 (01) : 277 - 290
  • [5] Triple microporous layer coated gas diffusion layer for performance enhancement of polymer electrolyte fuel cells under both low and high humidity conditions
    Kitahara, Tatsumi
    Nakajima, Hironori
    Inamoto, Masaoki
    Shinto, Kosuke
    JOURNAL OF POWER SOURCES, 2014, 248 : 1256 - 1263
  • [6] Pore-network modeling of liquid water transport in gas diffusion layer of a polymer electrolyte fuel cell
    Sinha, Puneet K.
    Wang, Chao-Yang
    ELECTROCHIMICA ACTA, 2007, 52 (28) : 7936 - 7945
  • [7] Water Transport in the Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell: Dynamic Pore-Network Modeling
    Qin, Chaozhong
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (09) : F1036 - F1046
  • [8] Performance of polymer electrolyte fuel cells with gradient pore microporous layers at moderate/high humidity
    Li, Tianya
    Chen, Guang
    Lin, Guangyi
    CERAMICS INTERNATIONAL, 2023, 49 (12) : 20715 - 20722
  • [9] Influence of Gas Diffusion Layers with Microporous Layer on the Performance of Polymer Electrolyte Fuel Cells
    Kitahara, T.
    Konomi, T.
    Nakajima, H.
    PROTON EXCHANGE MEMBRANE FUEL CELLS 9, 2009, 25 (01): : 1735 - 1744
  • [10] Improved Performance of Polymer Electrolyte Membrane Fuel Cells with Modified Microporous Layer Structures
    Alrwashdeh, Saad S.
    Manke, Ingo
    Markoetter, Henning
    Haussmann, Jan
    Arlt, Tobias
    Hilger, Andre
    Al-Falahat, A. M.
    Klages, Merle
    Scholta, Joachim
    Banhart, John
    ENERGY TECHNOLOGY, 2017, 5 (09) : 1612 - 1618