Magnetic perovskite nanohybrid based on g-C3N4 nanosheets for photodegradation of toxic environmental pollutants under short-time visible irradiation

被引:5
|
作者
Sharafinia, Soheila [1 ]
Farrokhnia, Abdolhadi [1 ]
Lemraski, Ensieh Ghasemian [2 ]
Rashidi, Alimorad [3 ]
机构
[1] Shahid Chamran Univ Ahvaz, Fac Sci, Dept Chem, Ahvaz, Iran
[2] Ilam Univ, Fac Sci, Dept Chem, Ilam, Iran
[3] Res Inst Petr Ind RIPI, Nanotechnol Res Ctr, Tehran, Iran
关键词
PHOTOCATALYTIC ACTIVITY; CATALYTIC DEGRADATION; HYBRID NANOCOMPOSITES; PHOTO-CATALYST; RHODAMINE-B; PEROXYMONOSULFATE; NANOPARTICLES; GRAPHENE; STRATEGY; SRTIO3;
D O I
10.1038/s41598-023-48725-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study, a magnetic perovskite nanohybrid based on g-C3N4 (gCN) nanosheets was synthesized and developed for the efficient photodegradation of toxic environmental pollutants under short-time visible irradiation. The synthesis of this nanohybrid involved the incorporation of SrTiO3:N (STO:N) and ZnFe2O4 (ZnF) onto the g-C3N4 nanosheets through a simple reflux method. Our investigation encompassed a comprehensive suite of analytical techniques, including BET, TGA, TEM, SEM, EDX, DRS, VSM, XRD, photocurrent, and FT-IR, to elucidate the physicochemical characteristics of this nanocomposite in the context of its application in photodegradation processes. The nanohybrid displayed significantly enhanced photocatalytic activity compared to its individual components, achieving a degradation efficiency of over 90% for various pollutants, including organic dyes like Rhodamine B (Rh-B), within a short irradiation time. This enhanced activity can be attributed to the synergistic effect between gCN, STO:N, and ZnF, which promotes the generation of reactive oxygen species and facilitates the degradation process. Notably, the nanocomposite containing 20 wt% STO:N perovskite and 20 wt% ZnF demonstrated the highest Rh-B degradation rate under visible light irradiation within just 30 min. Furthermore, the nanohybrid displayed excellent stability and reusability over seven consecutive runs, retaining its high photocatalytic activity even after multiple cycles of degradation. This remarkable performance can be attributed to the strong interaction between the gCN nanosheets and the magnetic perovskite components, which prevents their aggregation and ensures their efficient utilization. Additionally, the nanohybrid exhibited excellent visible light absorption, enabling the utilization of a wider range of light for degradation. This feature is particularly advantageous, as visible light is more abundant in sunlight compared to UV light, rendering the nanohybrid suitable for practical applications under natural sunlight. In conclusion, the ternary gCN-STO:N@ZnF nanocomposite represents a promising candidate for the treatment of organic pollutants in aqueous environments, offering a versatile and efficient solution.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Magnetic perovskite nanohybrid based on g-C3N4 nanosheets for photodegradation of toxic environmental pollutants under short-time visible irradiation
    Soheila Sharafinia
    Abdolhadi Farrokhnia
    Ensieh Ghasemian Lemraski
    Alimorad Rashidi
    Scientific Reports, 13
  • [2] Enhanced photodegradation of tetracycline by novel porous g-C3N4 nanosheets under visible light irradiation
    Phakathi, Nothando A.
    Tichapondwa, Shepherd M.
    Chirwa, Evans M. N.
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2025, 462
  • [3] Nanostructured MnOx/g-C3N4 for photodegradation of sulfamethoxazole under visible light irradiation
    Nguyen, Oanh T. K.
    Nguyen, Vinh Huu
    Linh, Nong Xuan
    Doan, Minh Que
    Hoang, Lan-Anh T.
    Lee, Taeyoon
    Nguyen, Trinh Duy
    RSC ADVANCES, 2024, 14 (49) : 36378 - 36389
  • [4] Photodegradation of sulfonamides by g-C3N4 under visible light irradiation: Effectiveness, mechanism and pathways
    Song, Yali
    Tian, Jiayu
    Gao, Shanshan
    Shao, Penghui
    Qi, Jingyao
    Cui, Fuyi
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 210 : 88 - 96
  • [5] Photodegradation of RhB over YVO4/g-C3N4 composites under visible light irradiation
    Cai, Jun
    He, Yiming
    Wang, Xiaoxing
    Zhang, Lihong
    Dong, Lvzhuo
    Lin, Hongjun
    Zhao, Leihong
    Yi, Xiaodong
    Weng, Weizheng
    Wan, Huilin
    RSC ADVANCES, 2013, 3 (43) : 20862 - 20868
  • [6] Persulfate enhanced photocatalytic degradation of bisphenol A by g-C3N4 nanosheets under visible light irradiation
    Liu, Bochuan
    Qiao, Meng
    Wang, Yanbin
    Wang, Lijuan
    Gong, Yan
    Guo, Tao
    Zhao, Xu
    CHEMOSPHERE, 2017, 189 : 115 - 122
  • [7] One-Step Synthesis of g-C3N4 Nanosheets with Enhanced Photocatalytic Performance for Organic Pollutants Degradation Under Visible Light Irradiation
    Hoang, Lan-Anh T.
    Le, Nhat Duy
    Nguyen, Trinh Duy
    Lee, Taeyoon
    TOPICS IN CATALYSIS, 2023, 66 (1-4) : 194 - 204
  • [8] One-Step Synthesis of g-C3N4 Nanosheets with Enhanced Photocatalytic Performance for Organic Pollutants Degradation Under Visible Light Irradiation
    Lan-Anh T. Hoang
    Nhat Duy Le
    Trinh Duy Nguyen
    Taeyoon Lee
    Topics in Catalysis, 2023, 66 : 194 - 204
  • [9] g-C3N4 nanosheets exfoliated by green wet ball milling process for photodegradation of organic pollutants
    Ma, Zixuan
    Zhou, Peiwen
    Zhang, Linping
    Zhong, Yi
    Sui, Xiaofeng
    Wang, Bijia
    Ma, Yimeng
    Feng, Xueling
    Xu, Hong
    Mao, Zhiping
    CHEMICAL PHYSICS LETTERS, 2021, 766
  • [10] Nitrogen photofixation on holey g-C3N4 nanosheets with carbon vacancies under visible-light irradiation
    Jianhua Ge
    Long Zhang
    Jing Xu
    Yujie Liu
    Daochuan Jiang
    Pingwu Du
    ChineseChemicalLetters, 2020, 31 (03) : 792 - 796