Transcriptomic and Physiological Responses of Qingye Ramie to Drought Stress

被引:0
|
作者
Liu, Tongying [1 ]
Fu, Yafen [1 ]
Li, Guang [1 ]
Wang, Xin [1 ]
Qu, Xiaoxin [1 ]
Wang, Yanzhou [1 ]
Zhu, Siyuan [1 ]
机构
[1] Chinese Acad Agr Sci, Inst Bast Fiber Crops, Changsha 410205, Peoples R China
来源
AGRONOMY-BASEL | 2024年 / 14卷 / 02期
基金
中国国家自然科学基金;
关键词
Qingye ramie; drought stress; metabolic pathways; qRT-PCR; TOLERANCE; OVEREXPRESSION; BIOSYNTHESIS; METABOLISM; COMPONENTS; GENES; YIELD;
D O I
10.3390/agronomy14020301
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Qingye ramie is a multi-purpose crop, used as a feed ingredient in southern China, that is susceptible to drought. Qingye ramie was studied to investigate the effects of high temperatures and drought on its growthh. The results show that, after drought, ramie leaves turn yellow and that the height of the plant, the number of tillers, and its antioxidant activity decreased. To elucidate the molecular mechanism of drought tolerance, we performed RNA sequencing (RNA-seq) on drought-stressed samples and found that 3893 differentially expressed genes showed significant changes; 1497 genes were upregulated, and 2796 genes were downregulated. These genes were categorized into four metabolic pathways and were mainly enriched in plant hormone signal transcription, phenylpropanoid biosynthesis, amino sugar and nucleotide sugar metabolism, and starch and sucrose metabolism. Among these, we mapped the regulatory mechanism of Qingye ramie under drought and adversity. Of these, the expression of MAPK-related genes in the plant hormone pathway was the most significant. The expression of three MAPK serine/threonine protein kinase genes was upregulated by 2.62- to 3.45-fold and the expression of PP2C-related genes increased by 3.34- to 14.12-fold. The expression of PYR/PYL genes decreased significantly by 2.92-7.09-fold. Furthermore, in addition to NAC, ERF, MYB, bHLH, bZIP, C2H2, GeBP, and WRKY transcription factors that have been shown to regulate drought. Some other transcription factors, such as CCL, ASD, SAU, and SPS, were also up- or downregulated in Qingye ramie. Then, the samples were analyzed by qRT-PCR and the variations were consistent with the sequencing results. Consequently, we suggest that the changes after drought stress in green-leaf ramie may be regulated by these transcription factors. Further studies can be carried out in the future, which will provide valuable and important information on the plant's drought resistance mechanism and deepen our understanding of the mechanisms of drought resistance in Qingye ramie.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Physiological and Transcriptomic Responses of Illicium difengpi to Drought Stress
    Liu, Baoyu
    Liang, Huiling
    Wu, Chao
    Huang, Xiyang
    Wen, Xiangying
    Wang, Manlian
    Tang, Hui
    [J]. SUSTAINABILITY, 2022, 14 (12)
  • [2] Physiological and transcriptomic responses of reproductive stage soybean to drought stress
    Congshan Xu
    Chao Xia
    Zhiqiang Xia
    Xiangjun Zhou
    Jing Huang
    Zhiqiang Huang
    Yan Liu
    Yiwei Jiang
    Shaun Casteel
    Cankui Zhang
    [J]. Plant Cell Reports, 2018, 37 : 1611 - 1624
  • [3] Physiological and transcriptomic responses of reproductive stage soybean to drought stress
    Xu, Congshan
    Xia, Chao
    Xia, Zhiqiang
    Zhou, Xiangjun
    Huang, Jing
    Huang, Zhiqiang
    Liu, Yan
    Jiang, Yiwei
    Casteel, Shaun
    Zhang, Cankui
    [J]. PLANT CELL REPORTS, 2018, 37 (12) : 1611 - 1624
  • [4] Transcriptomic and physiological responses of contrasting maize genotypes to drought stress
    Wang, Yifan
    Guo, Haoxue
    Wu, Xi
    Wang, Jiarui
    Li, Hongjie
    Zhang, Renhe
    [J]. FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [5] Physiological and transcriptomic insights into adaptive responses of Seriphidium transiliense seedlings to drought stress
    Liu, Xiqiang
    Chen, Aiping
    Wang, Yuxiang
    Jin, Guili
    Zhang, Yanhui
    Gu, Lili
    Li, Chenjian
    Shao, Xinqing
    Wang, Kun
    [J]. ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2022, 194
  • [6] Transcriptomic Changes Drive Physiological Responses to Progressive Drought Stress and Rehydration in Tomato
    Iovieno, Paolo
    Punzo, Paola
    Guida, Gianpiero
    Mistretta, Carmela
    Van Oosten, Michael J.
    Nurcato, Roberta
    Bostan, Hamed
    Colantuono, Chiara
    Costa, Antonello
    Bagnaresi, Paolo
    Chiusano, Maria L.
    Albrizio, Rossella
    Giorio, Pasquale
    Batelli, Giorgia
    Grillo, Stefania
    [J]. FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [7] Transcriptomic and physiological responses of Quercus acutissima and Quercus palustris to drought stress and rewatering
    Kim, Tae-Lim
    Oh, Changyoung
    Denison, Michael Immanuel Jesse
    Natarajan, Sathishkumar
    Lee, Kyungmi
    Lim, Hyemin
    [J]. FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [8] Transcriptomic Responses of Potato to Drought Stress
    Ernest B. Aliche
    Tim Gengler
    Irma Hoendervangers
    Marian Oortwijn
    Christian W. B. Bachem
    Theo Borm
    Richard G. F. Visser
    C. Gerard van der Linden
    [J]. Potato Research, 2022, 65 : 289 - 305
  • [9] Transcriptomic Responses of Potato to Drought Stress
    Aliche, Ernest B.
    Gengler, Tim
    Hoendervangers, Irma
    Oortwijn, Marian
    Bachem, Christian W. B.
    Borm, Theo
    Visser, Richard G. F.
    van der Linden, C. Gerard
    [J]. POTATO RESEARCH, 2022, 65 (02) : 289 - 305
  • [10] The Transcriptomic Responses of Pinus massoniana to Drought Stress
    Du, Mingfeng
    Ding, Guijie
    Cai, Qiong
    [J]. FORESTS, 2018, 9 (06)