Filopodia In Vitro and In Vivo

被引:13
|
作者
Blake, Thomas C. A.
Gallop, Jennifer L. [1 ]
机构
[1] Univ Cambridge, Gurdon Inst, Cambridge, England
基金
英国惠康基金;
关键词
formin; myosin; actin; Ena/VASP; protrusion; fascin; ACTIN CYTOSKELETON; ARP2/3; COMPLEX; BAR-DOMAIN; MEMBRANE INVAGINATION; STRUCTURAL BASIS; DYNAMICS; GROWTH; FILAMENT; PROTEIN; CDC42;
D O I
10.1146/annurev-cellbio-020223-025210
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Filopodia are dynamic cell surface protrusions used for cell motility, pathogen infection, and tissue development. The molecular mechanisms determining how and where filopodia grow and retract need to integrate mechanical forces and membrane curvature with extracellular signaling and the broader state of the cytoskeleton. The involved actin regulatory machinery nucleates, elongates, and bundles actin filaments separately from the underlying actin cortex. The refined membrane and actin geometry of filopodia, importance of tissue context, high spatiotemporal resolution required, and high degree of redundancy all limit current models. New technologies are improving opportunities for functional insight, with reconstitution of filopodia in vitro from purified components, endogenous genetic modification, inducible perturbation systems, and the study of filopodia in multicellular environments. In this review, we explore recent advances in conceptual models of how filopodia form, the molecules involved in this process, and our latest understanding of filopodia in vitro and in vivo.
引用
收藏
页码:307 / 329
页数:23
相关论文
共 50 条
  • [1] Mechanism of filopodia formation in vivo and in vitro
    Svitkina, TM
    Bulanova, EA
    Vignjevic, DM
    Chaga, OY
    Kojima, S
    Mejillano, MR
    Vasiliev, JM
    Borisy, GG
    MOLECULAR BIOLOGY OF THE CELL, 2002, 13 : 143A - 143A
  • [2] In vitro system for filopodia formation
    Vignjevic, D
    Svitkina, T
    Borisy, G
    MOLECULAR BIOLOGY OF THE CELL, 2001, 12 : 422A - 422A
  • [3] Modeling the formation of in vitro filopodia
    K.-C. Lee
    A. Gopinathan
    J. M. Schwarz
    Journal of Mathematical Biology, 2011, 63 : 229 - 261
  • [4] Modeling the formation of in vitro filopodia
    Lee, K. -C.
    Gopinathan, A.
    Schwarz, J. M.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2011, 63 (02) : 229 - 261
  • [5] Probing protein complexes in vivo using a myosin-based Filopodia Interaction Assay, FilopodIA
    Barzik, M.
    Drummond, M.
    Cole, S.
    Morozko, E.
    Goodman, S.
    Sutton, D. C.
    Boger, E. T.
    Belyantseva, I. A.
    Friedman, T. B.
    Bird, J. E.
    MOLECULAR BIOLOGY OF THE CELL, 2015, 26
  • [6] In vitro assembly of filopodia-like bundles
    Vignjevic, D
    Peloquin, J
    Borisy, GG
    METHODS IN ENZYMOLOGY, VOL 406, REGULATORS AND EFFECTORS OF SMALL GTPASES: RHO FAMILY, 2006, 406 : 727 - 739
  • [7] In vitro reconstitution of the lamellipodia to filopodia transition.
    Suarez, C.
    Winkelman, J. D.
    Harker, A. J.
    McCall, P. M.
    Morganthaler, A. N.
    Gardel, M. L.
    Kovar, D. R.
    MOLECULAR BIOLOGY OF THE CELL, 2018, 29 (26)
  • [8] The Function of Myosin-10 In Vitro and Inside Filopodia
    Takagi, Yasuharu
    Farrow, Rachel E.
    Mashanov, Gregory I.
    Billington, Neil
    Baboolal, Thomas G.
    Batters, Christopher
    Sellers, James R.
    Peckham, Michelle
    Molloy, Justin E.
    BIOPHYSICAL JOURNAL, 2013, 104 (02) : 23A - 23A
  • [9] Formation of filopodia-like bundles in vitro from a dendritic network
    Vignjevic, D
    Yarar, D
    Welch, MD
    Peloquin, J
    Svitkina, T
    Borisy, GG
    JOURNAL OF CELL BIOLOGY, 2003, 160 (06): : 951 - 962
  • [10] Filopodia
    Jacinto, A
    Wolpert, L
    CURRENT BIOLOGY, 2001, 11 (16) : R634 - R634