Synthesis and characterization of magnesium zinc ferrite nanoparticles for catalytic hydrogen evolution

被引:13
|
作者
Alshammari, Alhulw H. [1 ]
Alshammari, Khulaif [1 ]
Alshammari, Majed [1 ]
Taha, Taha Abdel Mohaymen [1 ]
机构
[1] Jouf Univ, Coll Sci, Phys Dept, POB 2014, Sakaka, Saudi Arabia
关键词
Hydrogen catalyst; Energy gap; Methanolysis; SODIUM-BOROHYDRIDE SOLUTION; MAGNETIC-PROPERTIES; ZNFE2O4; NANOPARTICLES; METAL NANOPARTICLES; HIGHLY EFFICIENT; GENERATION; PERFORMANCE; NANOSTRUCTURES; METHANOLYSIS; HYDROLYSIS;
D O I
10.1016/j.ijhydene.2023.11.158
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have prepared Mg1-xZnxFe2O4 nanoparticles (x values varying from 0.0 to 0.8 by 0.2 increments) for use as catalysts for hydrogen production in the methanolysis of sodium borohydride (NaBH4). The catalytic performance of the Mg1-xZnxFe2O4 nanoparticles with different zinc content for hydrogen production were evaluated in the methanolysis of NaBH4 inside glass vessels. Different characterization techniques were used to analyse the prepared nanoparticles such as X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), Field Emission Scanning Electron Microscope (FESEM), Transmission Electron microscopy (TEM), and Scanning Transmission Electron microscopy STEM. The average size of Mg1-xZnxFe2O4 nanoparticles was 10 nm. The largest energy band gap value was 4.77 eV for MgFe2O4 nanoparticles, while the lowest value was 2.89 eV for Mg0.2Zn0.8Fe2O4 nanoparticles. Mg0.8Zn0.2Fe2O4 nanoparticles were proven as the catalysts with the highest hydrogeneration rate with a value of 15,957 mL min-1 g-1.
引用
收藏
页码:734 / 742
页数:9
相关论文
共 50 条
  • [1] Synthesis and spectroscopic characterization of zinc ferrite nanoparticles
    Arora, Shefali
    Nandy, Subhajit
    Latwal, Mamta
    Pandey, Ganesh
    Singh, Jitendra P.
    Chae, Keun H.
    ADVANCES IN NANO RESEARCH, 2022, 13 (05) : 437 - 451
  • [2] "Naked" Gold Nanoparticles: Synthesis, Characterization, Catalytic Hydrogen Evolution, and SERS
    Merga, Getahun
    Saucedo, Nuvia
    Cass, Laura C.
    Puthussery, James
    Meisel, Dan
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (35): : 14811 - 14818
  • [4] Synthesis, characterization and properties of nickel based zinc ferrite nanoparticles
    Dubey, Hemant Kumar
    Verma, Chanda
    Rai, U. S.
    Kumar, Atendra
    Lahiri, Preeti
    INDIAN JOURNAL OF CHEMISTRY SECTION A-INORGANIC BIO-INORGANIC PHYSICAL THEORETICAL & ANALYTICAL CHEMISTRY, 2019, 58 (04): : 454 - 458
  • [5] Synthesis and characterization of zinc ferrite nanoparticles by a thermal treatment method
    Naseri, Mahmoud Goodarz
    Saion, Elias B.
    Hashim, Mansor
    Shaari, Abdul Halim
    Ahangar, Hossein Abasstabar
    SOLID STATE COMMUNICATIONS, 2011, 151 (14-15) : 1031 - 1035
  • [6] Synthesis and Characterization of Superparamagnetic Zinc Ferrite–Chitosan Composite Nanoparticles
    R. Raeisi Shahraki
    S. A. Seyyed Ebrahim
    S. M. Masoudpanah
    Journal of Superconductivity and Novel Magnetism, 2015, 28 : 2143 - 2147
  • [7] Preparation and characterization of magnesium ferrite nanoparticles
    Zhang, Chao
    Zhang, Chao-Ping
    Yao, Mei-Lan
    Zhao, Gang
    Jingxi Huagong/Fine Chemicals, 2003, 20 (08):
  • [8] Synthesis and magnetic hyperthermia properties of zwitterionic dopamine sulfonate ligated magnesium ferrite and zinc ferrite nanoparticles
    V. Vijayakanth
    V. Vinodhini
    A. Aparna
    M. S. Malavika
    C. Krishnamoorthi
    Journal of Materials Science: Materials in Electronics, 2021, 32 : 2395 - 2408
  • [9] Synthesis and magnetic hyperthermia properties of zwitterionic dopamine sulfonate ligated magnesium ferrite and zinc ferrite nanoparticles
    Vijayakanth, V.
    Vinodhini, V.
    Aparna, A.
    Malavika, M. S.
    Krishnamoorthi, C.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (02) : 2395 - 2408
  • [10] Mossbauer Studies on Nanoparticles of Zinc Substituted Magnesium Ferrite
    Nath, B. K.
    Chakrabarti, P. K.
    Das, S.
    Kumar, U.
    Mukhopadhyay, P. K.
    Das, D.
    JOURNAL OF SURFACE SCIENCE AND TECHNOLOGY, 2005, 21 (3-4) : 169 - 182