We study the Vehicle Routing Problem with Probabilistic Customers (VRP-PC), a two-stage optimization model, which is a fundamental building block within the broad family of stochastic routing problems. This problem is mainly motivated by logistics distribution networks in which customers receive frequent delivery services, and by the last mile problem faced by companies such as UPS and FedEx. In a first stage before customer service requests realize, a dispatcher determines a set of vehicle routes serving all potential customer locations. In a second stage occurring after observing all customer requests, vehicles execute planned routes skipping all locations of customers not requiring service. The objective is to minimize the expected vehicle travel cost assuming known customer realization probabilities. We propose a column generation framework to solve the VRP-PC to a given optimality tolerance. Specifically, we present two novel algorithms, one that under -approximates a solution's expected cost, and another that uses its exact expected cost. Each algorithm is equipped with a route pricing mechanism that iteratively improves the approximation precision of a route's reduced cost; this produces fast route insertions at the start of the algorithm and reaches termination conditions at the end of the execution. Compared to branch-and-cut algorithms for arc-based formulations, our framework can more readily incorporate sequence-dependent constraints, which are typically required in routing problems. We provide a priori and a posteriori performance guarantees for these algorithms, and demonstrate their effectiveness via a computational study on instances with realization probabilities ranging from 0.5 to 0.9.
机构:
Korea Adv Inst Sci & Technol, Dept Ind Engn, Yusong Gu, Taejon 305701, South KoreaKorea Adv Inst Sci & Technol, Dept Ind Engn, Yusong Gu, Taejon 305701, South Korea
Sung, CS
Hong, JM
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol, Dept Ind Engn, Yusong Gu, Taejon 305701, South KoreaKorea Adv Inst Sci & Technol, Dept Ind Engn, Yusong Gu, Taejon 305701, South Korea
机构:
Univ Texas Austin, Grad Program Operat Res & Ind Engn, Austin, TX 78712 USAUniv Texas Austin, Grad Program Operat Res & Ind Engn, Austin, TX 78712 USA
Bard, Jonathan F.
Nananukul, Narameth
论文数: 0引用数: 0
h-index: 0
机构:
Optimize Sci, Clifton, NJ USAUniv Texas Austin, Grad Program Operat Res & Ind Engn, Austin, TX 78712 USA
机构:
Rochester Inst Technol, Dept Ind & Syst Engn, Rochester, NY 14623 USARochester Inst Technol, Dept Ind & Syst Engn, Rochester, NY 14623 USA
Hewitt, Mike
Nemhauser, George
论文数: 0引用数: 0
h-index: 0
机构:
Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USARochester Inst Technol, Dept Ind & Syst Engn, Rochester, NY 14623 USA
Nemhauser, George
Savelsbergh, Martin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, AustraliaRochester Inst Technol, Dept Ind & Syst Engn, Rochester, NY 14623 USA
Savelsbergh, Martin
Song, Jin-Hwa
论文数: 0引用数: 0
h-index: 0
机构:
SK Innovat, Global Technol, Seoul, South Korea
Exxon Mobil Res & Engn Co, Annandale, NJ USARochester Inst Technol, Dept Ind & Syst Engn, Rochester, NY 14623 USA