Triqler for Protein Summarization of Data from Data-Independent Acquisition Mass Spectrometry

被引:2
|
作者
Truong, Patrick [1 ]
The, Matthew [2 ]
Kall, Lukas [1 ]
机构
[1] Royal Inst Technol KTH, Sch Engn Sci Chem Biotechnol & Hlth, Sci Life Lab, S-17121 Solna, Sweden
[2] Tech Univ Munich TUM, Chair Prote & Bioanalyt, D-85354 Freising Weihenstephan, Germany
基金
瑞典研究理事会;
关键词
mass spectrometry; protein summarization; Bayesian hierarchical modelling; label-free quantification; data-independent acquisition mass spectrometry; benchmark; mathematical methods; QUANTIFICATION; IDENTIFICATION; PROTEOMICS; MIXTURES;
D O I
10.1021/acs.jproteome.2c00607
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A frequent goal, or subgoal, when processing data from a quantitative shotgun proteomics experiment is a list of proteins that are differentially abundant under the examined experimental conditions. Unfortunately, obtaining such a list is a challenging process, as the mass spectrometer analyzes the proteolytic peptides of a protein rather than the proteins themselves. We have previously designed a Bayesian hierarchical probabilistic model, Triqler, for combining peptide identification and quantification errors into probabilities of proteins being differentially abundant. However, the model was developed for data from data-dependent acquisition. Here, we show that Triqler is also compatible with data-independent acquisition data after applying minor alterations for the missing value distribution. Furthermore, we find that it has better performance than a set of compared state-of-the-art protein summarization tools when evaluated on data-independent acquisition data.
引用
收藏
页码:1359 / 1366
页数:8
相关论文
共 50 条
  • [1] DIAmeter: matching peptides to data-independent acquisition mass spectrometry data
    Lu, Yang Young
    Bilmes, Jeff
    Rodriguez-Mias, Ricard A.
    Villen, Judit
    Noble, William Stafford
    BIOINFORMATICS, 2021, 37 : I434 - I442
  • [2] A Comparative Analysis of Data Analysis Tools for Data-Independent Acquisition Mass Spectrometry
    Zhang, Fangfei
    Ge, Weigang
    Huang, Lingling
    Li, Dan
    Liu, Lijuan
    Dong, Zhen
    Xu, Luang
    Ding, Xuan
    Zhang, Cheng
    Sun, Yingying
    Jun, A.
    Gao, Jinlong
    Guo, Tiannan
    MOLECULAR & CELLULAR PROTEOMICS, 2023, 22 (09)
  • [3] Data-Independent Acquisition for the Detection of Mononucleoside RNA Modifications by Mass Spectrometry
    Janssen, Kevin A.
    Xie, Yixuan
    Kramer, Marianne C.
    Gregory, Brian D.
    Garcia, Benjamin A.
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2022, 33 (05) : 885 - 893
  • [4] Building Spectral Libraries from Narrow-Window Data-Independent Acquisition Mass Spectrometry Data
    Heil, Lilian R.
    Fondrie, William E.
    McGann, Christopher D.
    Federation, Alexander J.
    Noble, William S.
    MacCoss, Michael J.
    Keich, Uri
    JOURNAL OF PROTEOME RESEARCH, 2022, 21 (06) : 1382 - 1391
  • [5] Processing strategies and software solutions for data-independent acquisition in mass spectrometry
    Bilbao, Aivett
    Varesio, Emmanuel
    Luban, Jeremy
    Strambio-De-Castillia, Caterina
    Hopfgartner, Gerard
    Mueller, Markus
    Lisacek, Frederique
    PROTEOMICS, 2015, 15 (5-6) : 964 - 980
  • [6] Benchmarking Bioinformatics Pipelines in Data-Independent Acquisition Mass Spectrometry for Immunopeptidomics
    Shahbazy, Mohammad
    Ramarathinam, Sri H.
    Illing, Patricia T.
    Jappe, Emma C.
    Faridi, Pouya
    Croft, Nathan P.
    Purcell, Anthony W.
    MOLECULAR & CELLULAR PROTEOMICS, 2023, 22 (04)
  • [7] Dedicated Software Enhancing Data-independent Acquisition Methods in Mass Spectrometry
    Bilbao, Aivett
    Lisacek, Frederique
    Hopfgartner, Gerard
    CHIMIA, 2016, 70 (04) : 293 - 293
  • [8] New targeted approaches for the quantification of data-independent acquisition mass spectrometry
    Bruderer, Roland
    Sondermann, Julia
    Tsou, Chih-Chiang
    Barrantes-Freer, Alonso
    Stadelmann, Christine
    Nesvizhskii, Alexey I.
    Schmidt, Manuela
    Reiter, Lukas
    Gomez-Varela, David
    PROTEOMICS, 2017, 17 (09)
  • [9] Characterization of Cerebrospinal Fluid via Data-Independent Acquisition Mass Spectrometry
    Barkovits, Katalin
    Linden, Andreas
    Galozzi, Sara
    Schilde, Lukas
    Pacharra, Sandra
    Mollenhauer, Brit
    Stoepel, Nadine
    Steinbach, Simone
    May, Caroline
    Uszkoreit, Julian
    Eisenacher, Martin
    Marcus, Katrin
    JOURNAL OF PROTEOME RESEARCH, 2018, 17 (10) : 3418 - 3430
  • [10] OptiMissP: A dashboard to assess missingness in proteomic data-independent acquisition mass spectrometry
    Arioli, Angelica
    Dagliati, Arianna
    Geary, Bethany
    Peek, Niels
    Kalra, Philip A.
    Whetton, Anthony D.
    Geifman, Nophar
    PLOS ONE, 2021, 16 (04):