Cohomological connectivity of perturbations of map-germs

被引:0
|
作者
Liu, Yongqiang [1 ]
Penafort Sanchis, Guillermo [2 ]
Zach, Matthias [3 ,4 ]
机构
[1] Univ Sci & Technol China, Inst Geometry & Phys, Hefei, Peoples R China
[2] Univ Valencia, Math Dept, Burjassot, Spain
[3] RPTU Kaiserslautern, Inst Math, Gottlieb Daimler Str, Kaiserslautern, Germany
[4] RPTU Kaiserslautern, Inst Math, Gottlieb Daimler Str,Gebaude 48, D-67663 Kaiserslautern, Germany
关键词
algebraic geometry; derived categories; perverse sheaves; singularity theory; vanishing cycles; TOPOLOGY; IMAGES;
D O I
10.1002/mana.202200460
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f:(Cn,S)->(Cp,0)$f: (\mathbb {C}<^>n,S)\rightarrow (\mathbb {C}<^>p,0)$ be a finite map-germ with n<p$n<p$ and Y delta$Y_\delta$ the image of a small perturbation f delta$f_\delta$. We show that the reduced cohomology of Y delta$Y_\delta$ is concentrated in a range of degrees determined by the dimension of the instability locus of f. In the case n >= p$n\ge p$, we obtain an analogous result, replacing finiteness by K$\mathcal {K}$-finiteness and Y delta$Y_\delta$ by the discriminant Delta(f delta)$\Delta (f_\delta)$. We also study the monodromy associated to the perturbation f delta$f_\delta$.
引用
收藏
页码:1601 / 1631
页数:31
相关论文
共 50 条