Characterizations and redundancies of g-frames in Hilbert spaces

被引:1
|
作者
Xiao, Xiangchun [1 ]
Zhao, Guoping [1 ]
Zhou, Guorong [1 ]
机构
[1] Xiamen Univ Technol, Sch Math & Stat, Xiamen 361024, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2024年 / 72卷 / 04期
关键词
G-frame; g-orthonormal basis; induced sequence; erasure; uniform excess; K-G-FRAMES; FUSION FRAMES; ROBUSTNESS; EXCESSES; SURGERY;
D O I
10.1080/03081087.2022.2160421
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let{lambda(j):j is an element of J}be a g-Bessel sequence of a Hilbert space. Thisstudy uses the type-II induced sequences{lambda(jk)lambda j:j is an element of J,k is an element of K-j}of{lambda(j):j is an element of J}to characterize{lambda(j):j is an element of J}to be a tight g-frame anda g-orthonormal basis. We also obtain the exact relationship between the synthesis operators of{lambda(j):j is an element of J}and its type-II induced sequences. We then use the type-I induced sequences of{lambda(j):j is an element of J}to characterize the (maximum) robustness to erasures and (maxi-mum) uniform excess of{lambda(j:)j is an element of J}, and vice versa. Finally, we esti-matetheuppererrorboundoftype-Iinducedsequencesundersomeperturbations of{lambda(j):j is an element of J} and {gamma(j):j is an element of J}, and vice versa.
引用
收藏
页码:547 / 562
页数:16
相关论文
共 50 条