PRICING VULNERABLE FADER OPTIONS UNDER STOCHASTIC VOLATILITY MODELS

被引:2
|
作者
Wang, Xingchun [1 ]
机构
[1] Univ Int Business & Econ, Sch Int Trade & Econ, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
Vulnerable fader options; path-dependent derivatives; stochastic volatility; default risk; BLACK-SCHOLES OPTIONS; CLOSED-FORM SOLUTION; CREDIT RISK; ASIAN OPTIONS;
D O I
10.3934/jimo.2022193
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we incorporate default risk into Heston's stochastic volatility model and focus on the valuation of vulnerable fader options. Fader options are path-dependent derivatives, depending on the time the underlying asset price stays inside a given range. We obtain an explicit pricing formula of vulnerable fader options, including fader options and (vulnerable) European options as special cases. Finally, we illustrate the effect of stochastic volatility and default risk on fader option prices. Specially, an inverted U-shaped curve is observed when we keep initial levels of the default intensity constant, but change the relative proportions of two factors in the default intensity.
引用
收藏
页码:5749 / 5766
页数:18
相关论文
共 50 条
  • [1] Pricing vulnerable options under a stochastic volatility model
    Yang, Sung-Jin
    Lee, Min-Ku
    Kim, Jeong-Hoon
    [J]. APPLIED MATHEMATICS LETTERS, 2014, 34 : 7 - 12
  • [2] Pricing vulnerable options with stochastic volatility
    Wang, Guanying
    Wang, Xingchun
    Zhou, Ke
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 485 : 91 - 103
  • [3] Pricing of vulnerable options under hybrid stochastic and local volatility
    Kim, Donghyun
    Choi, Sun-Yong
    Yoon, Ji-Hun
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 146
  • [4] Pricing Vulnerable European Options under Levy Process with Stochastic Volatility
    Ma, Chaoqun
    Yue, Shengjie
    Ren, Yishuai
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2018, 2018
  • [5] Pricing Vulnerable Options with Stochastic Volatility and Stochastic Interest Rate
    Ma, Chaoqun
    Yue, Shengjie
    Wu, Hui
    Ma, Yong
    [J]. COMPUTATIONAL ECONOMICS, 2020, 56 (02) : 391 - 429
  • [6] Pricing Vulnerable Options with Stochastic Volatility and Stochastic Interest Rate
    Chaoqun Ma
    Shengjie Yue
    Hui Wu
    Yong Ma
    [J]. Computational Economics, 2020, 56 : 391 - 429
  • [7] THE PRICING OF VULNERABLE FOREIGN EXCHANGE OPTIONS UNDER A MULTISCALE STOCHASTIC VOLATILITY MODEL
    Ha, Mijin
    Kim, Donghyun
    Yoon, Ji-hun
    [J]. JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2023, 41 (01): : 33 - 50
  • [8] CVA AND VULNERABLE OPTIONS IN STOCHASTIC VOLATILITY MODELS
    Alos, E.
    Antonelli, F.
    Ramponi, A.
    Scarlatti, S.
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2021, 24 (02)
  • [9] STOCHASTIC VOLATILITY MODELS AND THE PRICING OF VIX OPTIONS
    Goard, Joanna
    Mazur, Mathew
    [J]. MATHEMATICAL FINANCE, 2013, 23 (03) : 439 - 458
  • [10] A Unified Tree approach for options pricing under stochastic volatility models
    Lo, C. C.
    Nguyen, D.
    Skindilias, K.
    [J]. FINANCE RESEARCH LETTERS, 2017, 20 : 260 - 268