Comparative assessment of strain-controlled fatigue performance of SS 316L at room and low temperatures

被引:8
|
作者
Maharaja, Hitarth [1 ]
Das, Bimal [1 ]
Singh, Amit [1 ]
Mishra, Sushil [1 ]
机构
[1] Indian Inst Technol, Dept Mech Engn, Powai, India
关键词
Low cycle fatigue; Back stress; Secondary hardening; Strain-induced martensite; EBSD; LOW-CYCLE FATIGUE; AUSTENITIC STAINLESS-STEEL; BACK STRESS; AISI; 316L; PLASTIC-DEFORMATION; FRICTION STRESS; DEGREES-C; BEHAVIOR; MICROSTRUCTURE; TRANSFORMATION;
D O I
10.1016/j.ijfatigue.2022.107251
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In the present study, strain-controlled low cycle fatigue (LCF) behaviour of SS 316L at room temperature (RT) and-80 ? were investigated. RT LCF specimens show cyclic softening, whereas-80 ? specimens show initial cyclic softening followed by hardening due to strain-induced martensitic transformation (SIMT). Fatigue damage evolution mechanism is proposed for specimens tested at-80 ?, where compressive stresses develop due to SIMT and retards the crack growth. This leads to an increase in fatigue life for-80 ? specimens. An increase in back stress component at the initiation of secondary hardening is noticed for-80 ? specimens.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Strain controlled fatigue of type 316L(N) base metal and 316 SS weld metal at elevated temperatures
    Nagesha, A
    Valsan, M
    Rao, KBS
    Mannan, SL
    [J]. FATIGUE '99: PROCEEDINGS OF THE SEVENTH INTERNATIONAL FATIGUE CONGRESS, VOLS 1-4, 1999, : 1303 - 1308
  • [2] Multiaxial fatigue behavior of AISI 316L subjected to strain-controlled and ratcheting paths
    Facheris, G.
    Janssens, K. G. F.
    Foletti, S.
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2014, 68 : 195 - 208
  • [3] Strain-Controlled Fatigue Behavior and Microevolution of 316L Stainless Steel under Cyclic Shear Path
    Liu, Xinna
    Zhang, Shuai
    Bao, Yanmei
    Zhang, Zhongran
    Yue, Zhenming
    [J]. MATERIALS, 2022, 15 (15)
  • [4] Simultaneous enhancement of stress- and strain-controlled fatigue properties in 316L stainless steel with gradient nanostructure
    Lei, Y. B.
    Wang, Z. B.
    Xu, J. L.
    Lu, K.
    [J]. ACTA MATERIALIA, 2019, 168 : 133 - 142
  • [5] Cyclic mechanical behavior of 316L: Uniaxial LCF and strain-controlled ratcheting tests
    Facheris, G.
    Janssens, K. G. F.
    [J]. NUCLEAR ENGINEERING AND DESIGN, 2013, 257 : 100 - 108
  • [6] Research on multi-scale failure mechanism of gradient nanostructured 316L steel under strain-controlled fatigue at 650 °C
    Mao, Jianfeng
    Cao, Chi
    Yang, Jiadong
    Hua, Mengda
    Cai, Youquan
    Wang, Weigang
    Zhong, Fengping
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2023, 177
  • [7] Low cycle fatigue characteristics of 316L and 316LN stainless steels at room and low temperature
    He, Guoqiu
    Chen, Chengshu
    Gao, Qing
    [J]. Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University, 1996, 31 (05): : 483 - 487
  • [8] A comparative study on characterisation of ASS 316L at room and sub-zero temperatures
    Dharavath, Baloji
    Lade, Jayahari
    Varmaa, Dinesh
    Singh, Swadesh Kumar
    Naik, M. T.
    [J]. ADVANCES IN MATERIALS AND PROCESSING TECHNOLOGIES, 2021, 7 (04) : 608 - 616
  • [9] STRAIN-CONTROLLED FATIGUE OF NIAL CRYSTALS AT ROOM-TEMPERATURE
    SMITH, TR
    KALLINGAL, CG
    RAJAN, K
    STOLOFF, NS
    [J]. SCRIPTA METALLURGICA ET MATERIALIA, 1992, 27 (10): : 1389 - 1393
  • [10] Strain-controlled fatigue loading of an additively manufactured AISI 316L steel: Cyclic plasticity model and strain-life curve with a comparison to the wrought material
    Pelegatti, Marco
    Benasciutti, Denis
    De Bona, Francesco
    Lanzutti, Alex
    Novak, Jelena Srnec
    Salvati, Enrico
    [J]. FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2023, 46 (06) : 2195 - 2211