Data-Dependent Confidentiality in DCR Graphs

被引:0
|
作者
Geraldo, Eduardo [1 ]
Seco, Joao Costa [1 ]
Hildebrandt, Thomas [2 ]
机构
[1] NOVA Univ Lisbon, NOVA LINCS, Caparica, Portugal
[2] Univ Copenhagen, Copenhagen, Denmark
关键词
Information Flow Control; Privacy; Software Security; Business Processes; DCR Graphs; Security Monitoring; INFORMATION-FLOW; NONINTERFERENCE;
D O I
10.1145/3610612.3610619
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present DCRSec, a confidentially aware declarative process language with data that employs data-dependent security levels and an information flow monitor that prevents the violation of information flow policies. Data-dependent security levels have been used to shape precise information flow policies and properly identify security compartments. We use an illustrative example to show that it also models process instances in a flexible but precise way. The semantics of the language is based on a version of the Dynamic Condition Response Graph language, which allows for declaring data-aware, event-based processes with finitary and infinitary computations subject to liveness properties and dynamically spawned sub-processes. The key technical contribution is to provide a termination-insensitive information flow monitor and prove non-interference, a soundness property, and transparency in all traces of DCRSec processes.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Eigenvector Localization on Data-Dependent Graphs
    Cloninger, Alexander
    Czaja, Wojciech
    [J]. 2015 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2015, : 608 - 612
  • [2] Best data-dependent triangulations
    Alboul, L
    Kloosterman, G
    Traas, C
    van Damme, R
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 119 (1-2) : 1 - 12
  • [3] Predicting data-dependent jitter
    Buckwalter, J
    Analui, B
    Hajimiri, A
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2004, 51 (09) : 453 - 457
  • [4] Data-dependent metric filtering
    Mic, Vladimir
    Zezula, Pavel
    [J]. INFORMATION SYSTEMS, 2022, 108
  • [5] COMPILE-TIME SCHEDULING AND ASSIGNMENT OF DATA-FLOW PROGRAM GRAPHS WITH DATA-DEPENDENT ITERATION
    HA, SH
    LEE, EA
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 1991, 40 (11) : 1225 - 1238
  • [6] Data identifiability for Data-Dependent Superimposed Training
    Whitworth, T.
    Ghogho, M.
    McLernon, D. C.
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-14, 2007, : 2545 - 2550
  • [7] Data-Dependent Approximation in Social Computing
    Wu, Weili
    Li, Yi
    Pardalos, Panos M.
    Du, Ding-Zhu
    [J]. APPROXIMATION AND OPTIMIZATION: ALGORITHMS, COMPLEXITY AND APPLICATIONS, 2019, 145 : 27 - 34
  • [8] Data-dependent analyses in psychological research
    Mielke, PW
    Berry, KJ
    [J]. PSYCHOLOGICAL REPORTS, 2002, 91 (03) : 1225 - 1234
  • [9] Analysis and equalization of data-dependent jitter
    Buckwalter, JF
    Hajimiri, A
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2006, 41 (03) : 607 - 620
  • [10] On pipelining sequences of data-dependent loops
    Rodrigues, Rui M. M.
    Cardoso, Joao M. P.
    [J]. JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2007, 13 (03) : 419 - 439