High-resolution modeling for criteria air pollutants and the associated air quality index in a metropolitan city

被引:13
|
作者
Wang, Yiyi [1 ,2 ]
Huang, Lei [2 ]
Huang, Conghong [3 ,4 ,5 ]
Hu, Jianlin [1 ,8 ]
Wang, Meng [5 ,6 ,7 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Jiangsu Key Lab Atmospher Environm Monitoring & Po, 219 Ningliu Rd, Nanjing 210044, Peoples R China
[2] Nanjing Univ, Sch Environm, State Key Lab Pollut Control & Resource Reuse, Nanjing 210023, Peoples R China
[3] Nanjing Agr Univ, Coll Land Management, Nanjing 210095, Peoples R China
[4] Res Ctr Rural Land Resources Use & Consolidat, Natl & Local Joint Engn, Nanjing 210095, Peoples R China
[5] Univ Buffalo, Sch Publ Hlth & Hlth Profess, Dept Epidemiol & Environm Hlth, Buffalo, NY 14214 USA
[6] Univ Buffalo, RENEW Inst, Buffalo, NY USA
[7] Univ Washington, Sch Publ Hlth, Dept Environm & Occupat Hlth Sci, Seattle, WA USA
[8] Nanjing Univ Informat Sci & Technol, Sch Environm Sci & Engn, Nanjing 21004, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Spatiotemporal model; Air quality index; High resolution; Criteria air pollutants; LAND-USE REGRESSION; PM2.5; OZONE; CHINA; NO2; PM10;
D O I
10.1016/j.envint.2023.107752
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Air Quality Index (AQI), which jointly accounts for levels of criteria air pollutants relative to their guidelines, is largely reported at the city level. Little is known about the spatial patterns of the AQI in terms of the magnitude, temporal variability, and predominant air pollutant contributions at the hyperlocal scale within a city. To fill this research gap, we developed spatiotemporal models for each criteria air pollutant based on an advanced geostatistical framework and estimated daily AQI levels at 100-meter resolution in a metropolitan city in 2019. The model prediction ability (cross-validation, CV, Coefficient of determination, R-2, and root mean square error, RMSE) ranged from 0.43 and 1.86 mu g/m(3) for sulfur dioxide (SO2) to 0.92 and 6.25 mu g/m(3) for fine particulate matter (PM2.5) across the six air pollutants, leading to good performance in the subsequent AQI estimations (CV R-2 = 0.86, RMSE = 10.05). The AQI varies substantially over space at a fine scale and differs from the distributions of individual air pollutants. The unhealthy air quality (AQI > 100 over 75 days) spatial pattern was dominated by excessive ground-level ozone exposure in a large area. Our research provides a useful tool for accurately estimating AQI spatiotemporal variations for population health studies.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Prediction of air pollutants for air quality using deep learning methods in a metropolitan city
    Das, Bihter
    Dursun, Omer Osman
    Toraman, Suat
    URBAN CLIMATE, 2022, 46
  • [2] ASSOCIATION OF AIR QUALITY INDEX RELATED TO CRITERIA AIR POLLUTANTS IN ABADAN, IRAN
    Morovati, Pouran
    Valipour, Aliasghar
    Geravandi, Sahar
    Karimyan, Azimeh
    Behrooz, Hamid Reza Adeli
    Mohammadi, Mohammad Javad
    FRESENIUS ENVIRONMENTAL BULLETIN, 2018, 27 (06): : 4023 - 4028
  • [3] INVESTIGATION OF THE LEVELS OF AIR CRITERIA POLLUTANTS EFFECTING ON HEALTH IN DOGONBADAN CITY AND DESCRIPTION OF AIR QUALITY USING AQI INDEX
    Rezaei, Soheila
    Velayati, Azad
    Bagheri, Amin
    Moradzadeh, Rahmatollah
    Sohrabi, Younes
    Jamshidi, Arsalan
    Zare, Morteza
    Ansari, Ghasem
    Ahmadpour, Mohammad
    Mirzaei, Nezam
    ACTA MEDICA MEDITERRANEA, 2016, 32 : 1449 - 1455
  • [4] AIR QUALITY CRITERIA AND GUIDES FOR URBAN AIR POLLUTANTS
    ATHERLEY, GR
    ERGONOMICS, 1973, 16 (05) : 725 - 725
  • [5] The UrbEm Hybrid Method to Derive High-Resolution Emissions for City-Scale Air Quality Modeling
    Ramacher, Martin Otto Paul
    Kakouri, Anastasia
    Speyer, Orestis
    Feldner, Josefine
    Karl, Matthias
    Timmermans, Renske
    Denier van der Gon, Hugo
    Kuenen, Jeroen
    Gerasopoulos, Evangelos
    Athanasopoulou, Eleni
    ATMOSPHERE, 2021, 12 (11)
  • [6] A deep learning approach for prediction of air quality index in a metropolitan city
    Janarthanan, R.
    Partheeban, P.
    Somasundaram, K.
    Elamparithi, P. Navin
    SUSTAINABLE CITIES AND SOCIETY, 2021, 67
  • [7] High-resolution modeling of gaseous air pollutants over Tehran and validation with surface and satellite data
    Shahrokhishahraki, Nasimeh
    Rayner, Peter Julian
    Silver, Jeremy David
    Thomas, Steven
    Schofield, Robyn
    ATMOSPHERIC ENVIRONMENT, 2022, 270
  • [8] Significant effect of COVID-19 induced lockdown on air quality of the Indian Metropolitan City Kolkata using Air Quality Index and Health Air Quality Index
    Ali, Syed Yakub
    Mukherjee, Pallavi
    Sunar, Sangeeta
    Saha, Sarmistha
    Saha, Priti
    Dutta, Suvanka
    Goswami, Supriyo
    HUMAN AND ECOLOGICAL RISK ASSESSMENT, 2022, 28 (07): : 762 - 782
  • [9] Development of a high-resolution integrated emission inventory of air pollutants for China
    Wu, Nana
    Geng, Guannan
    Xu, Ruochong
    Liu, Shigan
    Liu, Xiaodong
    Shi, Qinren
    Zhou, Ying
    Zhao, Yu
    Liu, Huan
    Song, Yu
    Zheng, Junyu
    Zhang, Qiang
    He, Kebin
    EARTH SYSTEM SCIENCE DATA, 2024, 16 (06) : 2893 - 2915
  • [10] Impacts of electricity generation on air pollution: evidence from data on air quality index and six criteria pollutants
    Hu, Fengping
    Guo, Yongming
    SN APPLIED SCIENCES, 2021, 3 (01):