Tailored Polypeptide Star Copolymers for 3D Printing of Bacterial Composites Via Direct Ink Writing

被引:15
|
作者
Murphy, Robert D. [1 ,2 ]
Garcia, Ronnie V. [1 ,3 ]
Oh, Seung J. [4 ]
Wood, Tanner J. [4 ]
Jo, Kyoo D. [4 ]
de Alaniz, Javier Read [1 ,3 ]
Perkins, Ed [5 ]
Hawker, Craig J. [1 ,3 ,6 ]
机构
[1] Univ Calif Santa Barbara, Mat Res Lab MRL, Santa Barbara, CA 93106 USA
[2] Royal Coll Surgeons Ireland, Dept Chem, Dublin D02 YN77, Ireland
[3] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
[4] US Army, Construct Engn Res Lab CERL, Corps Engineers, Engn Res & Dev Ctr USACE ERDC, Champaign, IL 61822 USA
[5] USACE ERDC, Environm Lab EL, Vicksburg, MS 39180 USA
[6] Univ Calif Santa Barbara, Mat Dept, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
3D printing; additive manufacturing; block copolymers; hydrogels; peptides; HYDROGEL SCAFFOLDS;
D O I
10.1002/adma.202207542
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hydrogels hold much promise for 3D printing of functional living materials; however, challenges remain in tailoring mechanical robustness as well as biological performance. In addressing this challenge, the modular synthesis of functional hydrogels from 3-arm diblock copolypeptide stars composed of an inner poly(l-glutamate) domain and outer poly(l-tyrosine) or poly(l-valine) blocks is described. Physical crosslinking due to ss-sheet assembly of these star block copolymers gives mechanical stability during extrusion printing and the selective incorporation of methacrylate units allows for subsequent photocrosslinking to occur under biocompatible conditions. This permits direct ink writing (DIW) printing of bacteria-based mixtures leading to 3D objects with high fidelity and excellent bacterial viability. The tunable stiffness of different copolypeptide networks enables control over proliferation and colony formation for embedded Escherichia coli bacteria as demonstrated via isopropyl ss-d-1-thiogalactopyranoside (IPTG) induction of green fluorescent protein (GFP) expression. This translation of molecular structure to network properties highlights the versatility of these polypeptide hydrogel systems with the combination of writable structures and biological activity illustrating the future potential of these 3D-printed biocomposites.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Chitin nanocrystal based aqueous inks for 3D printing via direct ink writing
    Gu, Shaohua
    Ji, Hengying
    Liang, Kai
    Ji, Yali
    [J]. JOURNAL OF ELASTOMERS AND PLASTICS, 2022, 54 (06): : 922 - 936
  • [2] Direct Ink Writing: A 3D Printing Technology for Diverse Materials
    Saadi, M. A. S. R.
    Maguire, Alianna
    Pottackal, Neethu T.
    Thakur, Md Shajedul Hoque
    Ikram, Maruf Md
    Hart, A. John
    Ajayan, Pulickel M.
    Rahman, Muhammad M.
    [J]. ADVANCED MATERIALS, 2022, 34 (28)
  • [3] Design of a Waterborne Polyurethane-Urea Ink for Direct Ink Writing 3D Printing
    Vadillo, Julen
    Larraza, Izaskun
    Calvo-Correas, Tamara
    Gabilondo, Nagore
    Derail, Christophe
    Eceiza, Arantxa
    [J]. MATERIALS, 2021, 14 (12)
  • [4] Embedded Direct Ink Writing 3D Printing of UV Curable Resin/Sepiolite Composites with Nano Orientation
    Kim, Hoon
    Kim, Jaehwan
    Ryu, Kwang-Hyun
    Lee, Jiho
    Kim, Hyun-Joong
    Hyun, Jinho
    Koo, Jaseung
    [J]. ACS OMEGA, 2023, 8 (26): : 23554 - 23565
  • [5] Multiprocess 3D printing of sodium-ion batteries via vat photopolymerization and direct ink writing
    Martinez, Ana C.
    Schiaffino, Eva M.
    Aranzola, Ana P.
    Fernandez, Christian A.
    Seol, Myeong-Lok
    Sherrard, Cameroun G.
    Jones, Jennifer
    Huddleston, William H.
    Dornbusch, Donald A.
    Sreenivasan, Sreeprasad T.
    Cortes, Pedro
    MacDonald, Eric
    Maurel, Alexis
    [J]. JOURNAL OF PHYSICS-ENERGY, 2023, 5 (04):
  • [6] Direct Ink Writing 3D Printing Elastomeric Polyurethane Aided by Cellulose Nanofibrils
    Yu, Zhengyang
    Sun, Xia
    Zhu, Yeling
    Zhou, Elaine
    Cheng, Changfeng
    Zhu, Jiaying
    Yang, Pu
    Zheng, Dingyuan
    Zhang, Yifan
    Panahi-Sarmad, Mahyar
    Jiang, Feng
    [J]. ACS Nano, 2024, 18 (41) : 28142 - 28153
  • [7] 3D printing of SiC ceramic: Direct ink writing with a solution of preceramic polymers
    Chen, Hehao
    Wang, Xiaofeng
    Xue, Fengdan
    Huang, Yujuan
    Zhou, Kechao
    Zhang, Dou
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2018, 38 (16) : 5294 - 5300
  • [8] Fabrication of integrated microfluidic devices by direct ink writing (DIW) 3D printing
    Ching, Terry
    Li, Yingying
    Karyappa, Rahul
    Ohno, Akihiro
    Toh, Yi-Chin
    Hashimoto, Michinao
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2019, 297
  • [9] 3D printing of dense and porous alkali-activated refractory wastes via Direct Ink Writing (DIW)
    Coppola, Bartolomeo
    Tardivat, Caroline
    Richaud, Stephane
    Tulliani, Jean-Marc
    Montanaro, Laura
    Palmero, Paola
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2021, 41 (06) : 3798 - 3808
  • [10] A Printing-Centric Approach to the Electrostatic Modification of Polymer/Clay Composites for Use in 3D Direct-Ink Writing
    Rauzan, Brittany M.
    Lehman, Sean E.
    McCracken, Joselle M.
    Lee, Jonghun
    Lin, Xiao-Min
    Sandy, Alec
    Narayanan, Suresh
    Rogers, Simon A.
    Nuzzo, Ralph G.
    [J]. ADVANCED MATERIALS INTERFACES, 2018, 5 (08):