GEDI4R: an R package for NASA's GEDI level 4 A data downloading, processing and visualization

被引:4
|
作者
Vangi, Elia [1 ,2 ,5 ]
D'Amico, Giovanni [1 ,3 ]
Francini, Saverio [1 ,4 ]
Chirici, Gherardo [1 ,4 ]
机构
[1] Univ Firenze, Dipartimento Sci & Tecnol Agr Alimentari Ambiental, Florence, Italy
[2] Univ Molise, Dipartimento Biosci & Terr, Campobasso, Italy
[3] CREA Res Ctr Forestry & Wood, Arezzo, Italy
[4] Fdn Futuro Citta, Florence, Italy
[5] Natl Res Council Italy, CNR ISAFOM, Inst Agr & Forestry Syst Mediterranean, Forest Modelling Lab, Perugia, Italy
关键词
Lidar; Forest; Biomass; Ecosystem; Remote sensing; Open access;
D O I
10.1007/s12145-022-00915-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Forest ecosystems' structure and biomass monitoring are crucial for understanding the contribution of forests to the global greenhouse gas balance. NASA's Global Ecosystem Dynamics Investigation (GEDI) mission collects waveform lidar data to estimate Above Ground Biomass Density (AGBD). While of great interest, GEDI data are challenging to download and pre-process and require coding expertise, limiting their usage. In this paper, we introduce GEDI4R, an open-source R package providing efficient methods for downloading, reading, clipping, visualizing, and exporting GEDI data. GEDI4R was tested over the whole of Italy, and more than 11 million GEDI pulses were downloaded in less than 10 hours. The GEDI pulse density in forests ranged between 132 per km(2) (in the Friuli Venezia Giulia Italian administrative region) and 61 pulses per km(2) (in Trentino Alto-Adige). A regional-level comparison between the official growing stock volume estimates reported in the last Italian forest inventory and the AGBD extracted from the GEDI data acquired over the forest revealed large correlations (r(2) = 0.77). Our package facilitates the usage of GEDI AGBD data, which provides innovative information to monitor carbon cycle dynamics at the global scale.
引用
收藏
页码:1109 / 1117
页数:9
相关论文
共 34 条
  • [1] GEDI4R: an R package for NASA’s GEDI level 4 A data downloading, processing and visualization
    Elia Vangi
    Giovanni D’Amico
    Saverio Francini
    Gherardo Chirici
    Earth Science Informatics, 2023, 16 : 1109 - 1117
  • [2] GEDI: An R Package for Integration of Transcriptomic Data from Multiple Platforms for Bioinformatics Applications
    Stokholm, Mathias N.
    Rabaglino, Maria B.
    Kadarmideen, Haja N.
    CURRENT PROTOCOLS, 2024, 4 (10):
  • [3] qPCRtools: An R package for qPCR data processing and visualization
    Li, Xiang
    Wang, Yingmin
    Li, Jingyu
    Mei, Xinyue
    Liu, Yixiang
    Huang, Huichuan
    FRONTIERS IN GENETICS, 2022, 13
  • [4] paleobioDB: an R package for downloading, visualizing and processing data from the Paleobiology Database
    Varela, Sara
    Gonzalez-Hernandez, Javier
    Sgarbi, Luciano F.
    Marshall, Charles
    Uhen, Mark D.
    Peters, Shanan
    McClennen, Michael
    ECOGRAPHY, 2015, 38 (04) : 419 - 425
  • [5] Dynamic visualization of multi-level molecular data: The Director package in R
    Icay, Katherine
    Liu, Chengyu
    Hautaniemi, Sampsa
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 153 : 129 - 136
  • [6] MStractor: R Workflow Package for Enhancing Metabolomics Data Pre-Processing and Visualization
    Nicolotti, Luca
    Hack, Jeremy
    Herderich, Markus
    Lloyd, Natoiya
    METABOLITES, 2021, 11 (08)
  • [7] MSnbase-an R/Bioconductor package for isobaric tagged mass spectrometry data visualization, processing and quantitation
    Gatto, Laurent
    Lilley, Kathryn S.
    BIOINFORMATICS, 2012, 28 (02) : 288 - 289
  • [8] Assessing the performance of NASA's GEDI L4A footprint aboveground biomass density models using National Forest Inventory and airborne laser scanning data in Mediterranean forest ecosystems
    Pascual, Adrian
    Guerra-Hernandez, Juan
    Armston, John
    Minor, David M.
    Duncanson, Laura I.
    May, Paul B.
    Kellner, James R.
    Dubayah, Ralph
    FOREST ECOLOGY AND MANAGEMENT, 2023, 538
  • [9] MADE4:: an R package for multivariate analysis of gene expression data
    Culhane, AC
    Thioulouse, J
    Perrière, G
    Higgins, DG
    BIOINFORMATICS, 2005, 21 (11) : 2789 - 2790
  • [10] Basic4Cseq: an R/Bioconductor package for analyzing 4C-seq data
    Walter, Carolin
    Schuetzmann, Daniel
    Rosenbauer, Frank
    Dugas, Martin
    BIOINFORMATICS, 2014, 30 (22) : 3268 - 3269