Peer-to-Peer Energy Trading among Prosumers with Voltage Regulation Services Provision

被引:0
|
作者
Zhan, Bochun [1 ]
Feng, Changsen [2 ]
Lin, Zhemin [3 ]
Shao, Xiaoyu [4 ]
Wen, Fushuan [1 ]
机构
[1] Zhejiang Univ, Coll Elect Engn, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ Technol, Coll Informat Engn, Hangzhou 310023, Peoples R China
[3] Anhui Power Exchange Ctr Co Ltd, Hefei 230009, Peoples R China
[4] State Grid Anhui Elect Power Co Ltd, Econ & Tech Res Inst, Hefei 230071, Peoples R China
关键词
prosumers; peer-to-peer (P2P) energy trading; voltage regulation; alternative direction method of multipliers (ADMM); Nash bargaining; MARKET; MANAGEMENT; FRAMEWORK; INVERTER;
D O I
10.3390/en16145497
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The increasing penetration of distributed energy resources (DERs) into distribution networks has changed the energy trading pattern in traditional electricity markets to some degree, and this will possibly cause network congestion and nodal voltage violations. This paper proposes a two-stage modeling framework for peer-to-peer (P2P) energy trading with voltage regulation services provision considered. In the first stage, direct P2P trading among prosumers, considering network congestion management, is enabled. In the second stage, prosumers provide voltage regulation services to address possible voltage violations. Aiming at maximizing social welfare, the alternative direction method of multipliers (ADMM) is applied to solve the two-stage problem. On the basis of the optimal energy solution of the two-stage problem, the energy prices of P2P transactions and the price of voltage regulation services are settled based on the Nash bargaining model. Finally, simulation results of the IEEE 33-bus power system with six prosumers included demonstrate the effectiveness of the proposed models.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Peer-to-peer energy trading for photo-voltaic prosumers
    Lopez, Hector K.
    Zilouchian, Ali
    ENERGY, 2023, 263
  • [2] Peer-to-peer decentralized energy trading framework for retailers and prosumers
    Mehdinejad, Mehdi
    Shayanfar, Heidarali
    Mohammadi-Ivatloo, Behnam
    APPLIED ENERGY, 2022, 308
  • [3] Demand response-based peer-to-peer energy trading among the prosumers and consumers
    Kanakadhurga, Dharmaraj
    Prabaharan, Natarajan
    ENERGY REPORTS, 2021, 7 : 7825 - 7834
  • [4] A Novel Peer-to-Peer Negawatt Trading Transactive Energy System for Prosumers
    Sypatayev, D.
    Nunna, H. S. V. S. Kumar
    Shintemirov, Almas
    2020 IEEE 14TH INTERNATIONAL CONFERENCE ON COMPATIBILITY, POWER ELECTRONICS AND POWER ENGINEERING (CPE-POWERENG), VOL 1, 2020, : 181 - 186
  • [5] A framework for participation of prosumers in peer-to-peer energy trading and flexibility markets
    Khorasany, Mohsen
    Gazafroudi, Amin Shokri
    Razzaghi, Reza
    Morstyn, Thomas
    Shafie-khah, Miadreza
    APPLIED ENERGY, 2022, 314
  • [6] Optimal Prosumers' Peer-to-Peer Energy Trading and Scheduling in Distribution Networks
    Yao, Haotian
    Xiang, Yue
    Hu, Shuai
    Wu, Gang
    Liu, Junyong
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2022, 58 (02) : 1466 - 1477
  • [7] Peer-to-Peer Energy Trading Among Prosumers in Energy Communities Based on Preferences Considering Holacracy Structure
    Afzali, Peyman
    Rajaei, Arash
    Rashidinejad, Masoud
    Farahmand, Hossein
    IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, 2024, 71 : 7756 - 7767
  • [8] Peer-to-Peer Energy Trading for Residential Prosumers With Photovoltaic and Battery Storage Systems
    Wang, Jiatong
    Zhang, Jiangfeng
    Li, Li
    Lin, Yunfeng
    IEEE SYSTEMS JOURNAL, 2023, 17 (01): : 154 - 163
  • [9] An Efficient Peer-to-Peer Based Blokchain Approach for Prosumers Energy Trading in Microgrids
    Neagu, Bogdan Constantin
    Grigoras, Gheorghe
    Ivanov, Ovidiu
    PROCEEDINGS OF 2019 8TH INTERNATIONAL CONFERENCE ON MODERN POWER SYSTEMS (MPS), 2019,
  • [10] Decentralized Peer-to-Peer Energy Trading for Prosumers Considering Demand Response Program
    Seyfi, Mohammad
    Mehdinejad, Mehdi
    Mohammad-Ivatloo, Behnam
    Shayanfar, Heidarali
    2021 11TH SMART GRID CONFERENCE (SGC), 2021, : 315 - 319