BEST PROXIMITY POINTS FOR MULTIVALUED MAPPINGS AND EQUATION OF MOTION

被引:4
|
作者
Younis, M. [1 ]
Ahmad, H. [2 ]
Shahid, W. [3 ]
机构
[1] Zhejiang Normal Univ, Sch Math Sci, Jinhua 321004, Peoples R China
[2] Govt Coll Univ, Abdus Salam Sch Math Sci, Lahore 54600, Pakistan
[3] Univ Management & Technol, Dept Math, Lahore 54770, Pakistan
来源
关键词
Equation of motion; coincidence best proximity point; z-contraction; alternating distance; b-metric space; METRIC-SPACES; THEOREMS; COINCIDENCE; EXISTENCE;
D O I
10.11948/20230213
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this manuscript, we compute coincidence point, best proximity point, and fixed point results for multivalued proximal contractions in the setup of b-metric spaces using an alternating distance function. Moreover, we show the corresponding results for single-valued mappings can also be obtained using generalized proximal contractions. To validate our study, examples are given for both multivalued and single-valued mappings that strengthen our main results based on coincidence points. In the end, we apply the obtained result to show the existence of the solution of a particular type of second-order boundary value problem describing the equation of motion.
引用
收藏
页码:298 / 316
页数:19
相关论文
共 50 条
  • [1] On best proximity points of upper semicontinuous multivalued mappings
    AlNemer G.
    Markin J.
    Shahzad N.
    [J]. Fixed Point Theory and Applications, 2015 (1) : 1 - 10
  • [2] The existence of best proximity points for multivalued non-self-mappings
    Abkar, A.
    Gabeleh, M.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2013, 107 (02) : 319 - 325
  • [3] On semi best proximity points for multivalued mappings in quasi metric spaces
    Khan, Arshad Ali
    Ali, Basit
    George, Reny
    [J]. AIMS MATHEMATICS, 2023, 8 (10): : 23835 - 23849
  • [4] The existence of best proximity points for multivalued non-self-mappings
    A. Abkar
    M. Gabeleh
    [J]. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2013, 107 : 319 - 325
  • [5] On best proximity points for multivalued cyclic F-contraction mappings
    Khammahawong, Konrawut
    Ngiamsunthorn, Parinya Sa
    Kumam, Poom
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2016, 7 (02): : 363 - 374
  • [6] Best proximity points: global minimization of multivalued non-self mappings
    Moosa Gabeleh
    [J]. Optimization Letters, 2014, 8 : 1101 - 1112
  • [7] Best proximity points: global minimization of multivalued non-self mappings
    Gabeleh, Moosa
    [J]. OPTIMIZATION LETTERS, 2014, 8 (03) : 1101 - 1112
  • [8] Global Optimization and Common Best Proximity Points for Some Multivalued Contractive Pairs of Mappings
    Debnath, Pradip
    Srivastava, Hari Mohan
    [J]. AXIOMS, 2020, 9 (03)
  • [9] BEST PROXIMITY POINTS OF MULTIVALUED GERAGHTY CONTRACTIONS
    Debnath, Pradip
    [J]. MISKOLC MATHEMATICAL NOTES, 2023, 24 (01) : 119 - 127
  • [10] Best proximity points of cyclic mappings
    Karapinar, Erdal
    [J]. APPLIED MATHEMATICS LETTERS, 2012, 25 (11) : 1761 - 1766