Matter-wave analog of a fiber-optic gyroscope

被引:9
|
作者
Krzyzanowska, Katarzyna A. [1 ]
Ferreras, Jorge [1 ,2 ]
Ryu, Changhyun [1 ]
Samson, Edward Carlo [1 ,3 ]
Boshier, Malcolm G. [1 ]
机构
[1] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA
[2] Rutherford Appleton Lab, Didcot OX11 0QX, Oxfordshire, England
[3] Miami Univ, Dept Phys, Oxford, OH 45056 USA
关键词
PHASE DIFFUSION; ATOMS;
D O I
10.1103/PhysRevA.108.043305
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Confining the propagating wave packets of an atom interferometer inside a waveguide can substantially reduce the size of the device while preserving high sensitivity. We have realized a two-dimensional Sagnac atom interferometer in which Bose-condensed 87Rb atoms propagate within a tight waveguide formed by a collimated laser beam, a matter wave analog of the fiber optic gyro. The condensate is split, reflected, and recombined with a series of Bragg pulses while the waveguide moves transversely so that the wave-packet trajectories enclose an area. Delta-kick cooling is used to prepare low-density atomic wave packets with a temperature of 3 nK. The low density reduces the impact of interatomic interactions, while the low temperature limits the expansion of the wave packet during the interferometer cycle. The effective enclosed area is 0.8 mm2 with an average fringe contrast of 20% and underlying contrast up to 60%. The main source of the reduced average contrast is phase noise caused by mechanical vibrations of the optical components. We present a measurement of Allan deviation for such an atom rotation sensor, showing that the interferometer phase noise falls with averaging time tau as tau-1/2 for tau up to 10 000 seconds. The statistical noise falls below the Earth rotation rate after 30 minutes of averaging.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Fundamentals of the interferometric fiber-optic gyroscope
    Hervé C. Lefèvre
    [J]. Optical Review, 1997, 4 (1)
  • [2] CubeSat compatible Fiber-Optic Gyroscope
    Chung, Hung-Pin
    Chang, Sheng-Han
    Hsieh, Ching-Lu
    Yang, Sung-Lin
    Chen, Yen-Hung
    [J]. 2020 OPTO-ELECTRONICS AND COMMUNICATIONS CONFERENCE (OECC 2020), 2020,
  • [3] Fundamentals of the interferometric fiber-optic gyroscope
    Lefevre, HC
    [J]. FIBER OPTIC GYROS: 20TH ANNIVERSARY CONFERENCE, 1996, 2837 : 2 - 17
  • [4] The fiber-optic gyroscope: Achievement and perspective
    Lefèvre, H.C.
    [J]. Lefevre, H.C., 1600, Maik Nauka Publishing / Springer SBM (03): : 223 - 226
  • [5] Fundamentals of the interferometric fiber-optic gyroscope
    Lefevre, HC
    [J]. OPTICAL REVIEW, 1997, 4 (1A) : 20 - 27
  • [6] A dual atomic beam matter-wave gyroscope
    Gustavson, TL
    Bouyer, P
    Kasevich, MA
    [J]. METHODS FOR ULTRASENSITIVE DETECTION, 1998, 3270 : 62 - 69
  • [7] FIBER-OPTIC GYROSCOPE WITH POLARIZATION-HOLDING FIBER
    BURNS, WK
    MOELLER, RP
    VILLARRUEL, CA
    ABEBE, M
    [J]. OPTICS LETTERS, 1983, 8 (10) : 540 - 542
  • [8] Fiber-Optic Gyroscope for Periscope Mirror Stabilization
    Erler, T.
    Buechele, S.
    Oswald, M.
    [J]. SYMPOSIUM GYRO TECHNOLOGY 2009, 2009,
  • [9] The new-conceptual fiber-optic gyroscope
    Zheng, Gang
    [J]. ADVANCED SENSOR SYSTEMS AND APPLICATIONS IV, 2010, 7853
  • [10] Resonator Fiber-Optic Gyroscope with Interferometric Detection
    Zhu, Shuguang
    Mo, Qian
    Fan, Weibing
    Huang, Guangqi
    Zhu, Fangzhou
    Liu, Wei
    Xu, Yong
    Li, Zhiqiang
    Hu, Xiaofeng
    [J]. 2011 INTERNATIONAL CONFERENCE ON FUTURE COMPUTER SCIENCE AND APPLICATION (FCSA 2011), VOL 4, 2011, : 176 - 179