Nanofibrous Janus membrane with improved self-cleaning property for efficient oil-in-water and water-in-oil emulsions separation

被引:20
|
作者
Zhang, Xingzhen [1 ,3 ]
Liu, Ying [3 ]
Zhang, Feng [3 ]
Fang, Wangxi [2 ]
Jin, Jian [2 ,3 ]
Zhu, Yuzhang [2 ]
机构
[1] Huaiyin Normal Univ, Sch Chem & Chem Engn, Jiangsu Engn Lab Environm Funct Mat, Jiangsu Key Lab Chem Low Dimens Mat, Huaian 223300, Peoples R China
[2] Chinese Acad Sci, Suzhou Inst Nanotech & Nanob, i Lab, Suzhou 215123, Peoples R China
[3] Soochow Univ, Coll Chem Chem Engn & Mat Sci, Innovat Ctr Chem Sci, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
Janus membrane; Self-cleaning; Oil-in-water emulsions; Water-in-oil emulsions; OIL/WATER SEPARATION; DEGRADATION;
D O I
10.1016/j.seppur.2022.122914
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Developing a membrane integrating high separation efficiency and good anti-fouling ability for both oil-in-water and water-in-oil emulsions is meaningful due to the complexity and diversity of actual oily wastewater. Herein, a facile strategy was designed to generate a nanofibrous Janus membrane to achieve multifunctional and self-cleaning properties. Hydrophilic beta-FeOOH was anchored on poly(vinylidene fluoride-co-hexa-fluoropropylene) (PVDF-HEP) fibers to achieve hydrophilicity and self-cleaning performance of PVDF-HEP/beta-FeOOH layer by in situ mineralization technology. The Janus membrane was then obtained by incorporating PVDF-HEP fibers layer onto the hydrophilic layer through electrospinning technology. PVDF-HEP/beta-FeOOH layer owns super-hydrophilicity (WCA = 0 degrees) and underwater superoleophobicity (OCA = 159 degrees), which can separate different surfactant-stabilized oil-in-water emulsions with separation efficiency of above 99.8 % when this layer is facing up. Conversely, the PVDF-HEP layer exhibits superhydrophobicity (WCA = 149 degrees), which can separate different surfactant-stabilized water-in-oil emulsions with separation efficiency of above 99 % when this layer is facing up. More importantly, a satisfying water flux recovery rate of 98.2 % is acquired due to the synergistic effect between beta-FeOOH photocatalysis and asymmetric wettability of the membrane, endowing the membrane with effective self-cleaning capability and satisfactory stability. This study provides a new strategy for designing multifunc-tional membrane toward actual complex oily wastewater treatment.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Self-Cleaning Piezoelectric Membrane for Oil-in-Water Separation
    Mao, Hengyang
    Qiu, Minghui
    Bu, Jiawei
    Chen, Xianfu
    Verweij, Henk
    Fan, Yiqun
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (21) : 18093 - 18103
  • [2] An unmodified recycled polyethylene terephthalate (PET) nanofibrous membrane for water-in-oil and oil-in-water emulsions separation
    Dansawad, Panchan
    Li, Yanxiang
    Cao, Lixia
    Gao, Haigang
    Yang, Chaoyong
    Huang, Enming
    You, Siming
    Li, Wangliang
    [J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 696
  • [3] A Self-Cleaning Heterostructured Membrane for Efficient Oil-in-Water Emulsion Separation with Stable Flux
    Cai, Yahui
    Chen, Dongyun
    Li, Najun
    Xu, Qingfeng
    Li, Hua
    He, Jinghui
    Lu, Jianmei
    [J]. ADVANCED MATERIALS, 2020, 32 (25)
  • [4] Under-Oil Superhydrophilic/Superhydrophobic Janus Nanofibrous Membrane for Highly Efficient Separation of Surfactant-Stabilized Water-in-Oil Emulsions
    Guo, Tao
    Chi, Huanjie
    Wei, Zhenzhen
    Zhao, Yan
    [J]. LANGMUIR, 2023, 39 (46) : 16668 - 16675
  • [5] Sacrifice Template Strategy to the Fabrication of a Self-Cleaning Nanofibrous Membrane for Efficient Crude Oil-in-Water Emulsion Separation with High Flux
    Wu, Mingming
    Liu, Weimin
    Mu, Peng
    Wang, Qingtao
    Li, Jian
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (47) : 53484 - 53493
  • [6] Robust self-cleaning membrane with superhydrophilicity and underwater superoleophobicity for oil-in-water separation
    Yue, Reng-Yu
    Yuan, Peng-Cheng
    Zhang, Chun-Miao
    Wan, Zhang-Hong
    Wang, Shu-Guang
    Sun, Xuefei
    [J]. CHEMOSPHERE, 2023, 330
  • [7] Self-healing and superwettable nanofibrous membranes for efficient separation of oil-in-water emulsions
    Cai, Yahui
    Chen, Dongyun
    Li, Najun
    Xu, Qingfeng
    Li, Hua
    He, Jinghui
    Lu, Jianmei
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (04) : 1629 - 1637
  • [8] Highly efficient self-cleaning of heavy polyelectrolyte coated electrospun polyacrylonitrile nanofibrous membrane for separation of oil/water emulsions with intermittent pressure
    Guo, Jian-Wei
    Wang, Chih-Feng
    Chen, Shih-Hsun
    Lai, Juin-Yih
    Lu, Chien-Hsing
    Chen, Jem-Kun
    [J]. SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 234
  • [9] A universal strategy for efficient separation from single emulsion separation to oil-in-water and water-in-oil mixed emulsions
    Xiang, Qian
    Liu, Yan
    Wang, Bo
    Huang, Chengyi
    Wang, Lilin
    He, Jinsong
    Tian, Dong
    Shen, Fei
    Zhang, Yanzong
    [J]. SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 354
  • [10] A Superhydrophilic/Superhydrophobic Janus Membrane for Enhanced On-Demand Inversion Separation of Surfactant-Stabilized Water-in-Oil and Oil-in-Water Emulsions
    Xu, Jicheng
    Xiong, Qi
    Liu, Qing
    Jiang, Yan
    Yue, Xuejie
    Yang, Dongya
    Zhang, Tao
    Qiu, Fengxian
    [J]. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024, 49 (06) : 8525 - 8534