Hierarchical Bayesian Models for Small Area Estimation under Overdispersed Count Data

被引:0
|
作者
Wulandari, Ita [1 ]
Notodiputro, Khairil Anwar [2 ]
Fitrianto, Anwar [2 ]
Kurnia, Anang [2 ]
机构
[1] IPB Univ, Kabupaten Bogor 16680, Jawa Barat, Indonesia
[2] IPB Univ, Dept Stat, Stat & Data Sci, Kabupaten Bogor 16680, Jawa Barat, Indonesia
关键词
Count Data; Hierarchical Bayesian; Overdispersion; Zero-inflated; Under-five Mortality Rate; RATES;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Bayesian analysis was applied to small area models with overdispersed response variables. The benefits of implementing this strategy by Markov Chain Monte Carlo methods make inference straightforward and computationally feasible. In this paper, we apply the strategy into area-level modeling to predict the under-five mortality rate at the district level in Java Island, the most populated region in Indonesia. The result shows that the zero-inflated negative binomial model yields the reduced relative standard error and relative mean squared error when compared to district estimates, the zero-inflated generalized Poisson and Poisson models.
引用
收藏
页码:1333 / 1342
页数:10
相关论文
共 50 条
  • [1] Comparison of Hierarchical Bayesian Models for Overdispersed Count Data using DIC and Bayes' Factors
    Millar, Russell B.
    BIOMETRICS, 2009, 65 (03) : 962 - 969
  • [2] Estimation of hurdle models for overdispersed count data
    Farbmacher, Helmut
    STATA JOURNAL, 2011, 11 (01): : 82 - 94
  • [3] Conditional overdispersed models: Application to count area data
    Cepeda-Cuervo, Edilberto
    Cordoba, Michel
    Nunez-Anton, Vicente
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2018, 27 (10) : 2964 - 2988
  • [4] Hierarchical Bayesian small area estimation for circular data
    Hernandez-Stumpfhauser, Daniel
    Breidt, F. Jay
    Opsomer, Jean D.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2016, 44 (04): : 416 - 430
  • [5] The use of sampling weights in Bayesian hierarchical models for small area estimation
    Chen, Cici
    Wakefield, Jon
    Lumely, Thomas
    SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2014, 11 : 33 - 43
  • [6] Robust estimation and outlier detection for overdispersed multinomial models of count data
    Mebane, WR
    Sekhon, JS
    AMERICAN JOURNAL OF POLITICAL SCIENCE, 2004, 48 (02) : 392 - 411
  • [7] Estimation of mean using under-reported and overdispersed count data
    Sengupta, Debjit
    Roy, Surupa
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024,
  • [8] Hierarchical Bayesian models for small area estimation with GB2 distribution
    Manandhar, Binod
    Nandram, Balgobin
    JOURNAL OF APPLIED STATISTICS, 2025,
  • [9] Hierarchical Bayesian models for small area estimation of forest variables using LiDAR
    Planck, Neil R. Ver
    Finley, Andrew O.
    Kershaw, John A., Jr.
    Weiskittel, Aaron R.
    Kress, Megan C.
    REMOTE SENSING OF ENVIRONMENT, 2018, 204 : 287 - 295
  • [10] A Bayesian approach to analyse overdispersed longitudinal count data
    Rizzato, Fernanda B.
    Leandro, Roseli A.
    Demetrio, Clarice G. B.
    Molenberghs, Geert
    JOURNAL OF APPLIED STATISTICS, 2016, 43 (11) : 2085 - 2109