High-bandwidth warm-atom quantum memory using hollow-core photonic crystal fibers

被引:2
|
作者
Rowland, Jed [1 ,2 ]
Perrella, Christopher [1 ,2 ,3 ,4 ]
Luiten, Andre N. [1 ,2 ]
Gartman, Rafal [5 ]
Kaczmarek, Krzysztof T. [5 ]
Nunn, Joshua [6 ]
Sparkes, Ben M. [1 ,2 ,7 ]
机构
[1] Univ Adelaide, Inst Photon & Adv Sensing IPAS, Adelaide, SA 5005, Australia
[2] Univ Adelaide, Sch Phys Sci, Adelaide, SA 5005, Australia
[3] Univ Adelaide, Ctr Light Life CLL, Adelaide, SA 5005, Australia
[4] Univ Adelaide, Sch Biol Sci, Adelaide, SA 5005, Australia
[5] ORCA Comp Ltd, London, England
[6] Univ Bath, CPPM, Bath BA2 7AY, Somerset, England
[7] Def Sci & Technol Grp, Edinburgh, SA 5111, Australia
基金
澳大利亚研究理事会;
关键词
LIGHT;
D O I
10.1103/PhysRevApplied.21.014048
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present an experimental realization of a noise-free and high-bandwidth quantum memory scheme using a rubidium vapor that is confined within the hollow core of a photonic crystal fiber. We achieve the same internal efficiencies as similar free-space experiments (30%) for 4.5-ns-long optical pulses but with a 100-fold reduction in the control-field power required. Modeling indicates that this efficiency could be improved to 88% with higher control powers and the implementation of techniques such as light-induced atomic desorption to increase the optical depth. The compactness, robustness, and low drive power of this approach lends itself to direct integration into large-scale fiber-based quantum processors
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Quantum Coherent Effects with Hollow-Core Photonic Crystal fibers
    Benabid, F.
    Light, P. S.
    Couny, F.
    [J]. 2008 CONFERENCE ON LASERS AND ELECTRO-OPTICS & QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE, VOLS 1-9, 2008, : 1990 - 1991
  • [2] Hollow-Core Photonic Crystal Fibers: Advances and Prospects
    Gerome, Frederic
    Humbert, Georges
    Auguste, Jean-Louis
    Jamier, Raphael
    Blondy, Jean-Marc
    Wadsworth, William
    Knight, Jonathan
    [J]. 2010 12TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2011,
  • [3] Sensor properties of hollow-core photonic crystal fibers
    Tuchin, V. V.
    Skibina, Yu. S.
    Beloglazov, V. I.
    Chainikov, M. V.
    Skibina, N. B.
    Mikhailova, N. A.
    Zhestkov, P. M.
    Silokhin, I. Yu.
    [J]. TECHNICAL PHYSICS LETTERS, 2008, 34 (08) : 663 - 665
  • [4] Plasma Photonics in Hollow-Core Photonic Crystal Fibers
    Debord, Benoit
    Gerome, Frederic
    Jamier, Raphael
    Gadonna, Katell
    Vial, Florian
    Leroy, Olivier
    Leprince, Philippe
    Boisse-Laporte, Caroline
    Alves, Luis
    Benabid, Fetah
    [J]. 2013 15TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON 2013), 2013,
  • [5] Dispersion characteristics of hollow-core photonic crystal fibers
    Khromova I.A.
    Melnikov L.A.
    [J]. Physics of Particles and Nuclei Letters, 2007, 4 (2) : 176 - 179
  • [6] Sensor properties of hollow-core photonic crystal fibers
    V. V. Tuchin
    Yu. S. Skibina
    V. I. Beloglazov
    M. V. Chainikov
    N. B. Skibina
    N. A. Mikhailova
    P. M. Zhestkov
    I. Yu. Silokhin
    [J]. Technical Physics Letters, 2008, 34
  • [7] Raman spectroscopy of nanoparticles using hollow-core photonic crystal fibers
    Irizar, Juan
    Dinglasan, Jordan
    Goh, Jane Betty
    Khetani, Altaf
    Anis, Hanan
    Anderson, Darren
    Goh, Cynthia
    Helmy, A. S.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2008, 14 (04) : 1214 - 1222
  • [8] High-order solitons transmission in hollow-core photonic crystal fibers
    Liu, Wenjun
    Pang, Lihui
    Yan, Hao
    Ma, Guoli
    Lei, Ming
    Wei, Zhiyi
    [J]. EPL, 2016, 116 (06)
  • [9] An atom interferometer inside a hollow-core photonic crystal fiber
    Xin, Mingjie
    Leong, Wui Seng
    Chen, Zilong
    Lan, Shau-Yu
    [J]. SCIENCE ADVANCES, 2018, 4 (01):
  • [10] Low loss and broadband hollow-core photonic crystal fibers
    Wang, Y. Y.
    Gerome, F.
    Humbert, G.
    Blondy, J. M.
    Benabid, F.
    [J]. PHOTONIC AND PHONONIC PROPERTIES OF ENGINEERED NANOSTRUCTURES, 2011, 7946