Inferring bacterial transmission dynamics using deep sequencing genomic surveillance data

被引:0
|
作者
Senghore, Madikay [1 ]
Read, Hannah [2 ]
Oza, Priyali [2 ]
Johnson, Sarah [2 ]
Passarelli-Araujo, Hemanoel [1 ,3 ]
Taylor, Bradford P. [1 ]
Ashley, Stephen [2 ]
Grey, Alex [2 ]
Callendrello, Alanna [1 ]
Lee, Robyn [1 ,4 ]
Goddard, Matthew R. [5 ,6 ]
Lumley, Thomas [7 ]
Hanage, William P. [1 ]
Wiles, Siouxsie [2 ,8 ]
机构
[1] Harvard TH Chan Sch Publ Hlth, Ctr Communicable Dis Dynam, Dept Epidemiol, Boston, MA 02115 USA
[2] Univ Auckland, Dept Mol Med & Pathol, Bioluminescent Superbugs Lab, Auckland, New Zealand
[3] Univ Fed Minas Gerais, Dept Biochem & Immunol, Belo Horizonte, MG, Brazil
[4] Univ Toronto, Dalla Lana Sch Publ Hlth, Toronto, ON, Canada
[5] Univ Auckland, Sch Biol Sci, Auckland, New Zealand
[6] Univ Lincoln, Sch Life & Environm Sci, Lincoln, England
[7] Univ Auckland, Dept Stat, Auckland, New Zealand
[8] Ctr Res Excellence Complex Syst, Auckland, New Zealand
基金
美国国家卫生研究院;
关键词
PATHOGEN; COLONIZATION; ALIGNMENT; FORMAT;
D O I
10.1038/s41467-023-42211-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Identifying and interrupting transmission chains is important for controlling infectious diseases. One way to identify transmission pairs - two hosts in which infection was transmitted from one to the other - is using the variation of the pathogen within each single host (within-host variation). However, the role of such variation in transmission is understudied due to a lack of experimental and clinical datasets that capture pathogen diversity in both donor and recipient hosts. In this work, we assess the utility of deep-sequenced genomic surveillance (where genomic regions are sequenced hundreds to thousands of times) using a mouse transmission model involving controlled spread of the pathogenic bacterium Citrobacter rodentium from infected to naive female animals. We observe that within-host single nucleotide variants (iSNVs) are maintained over multiple transmission steps and present a model for inferring the likelihood that a given pair of sequenced samples are linked by transmission. In this work we show that, beyond the presence and absence of within-host variants, differences arising in the relative abundance of iSNVs (allelic frequency) can infer transmission pairs more precisely. Our approach further highlights the critical role bottlenecks play in reserving the within-host diversity during transmission. Studying rare genetic changes that arose as an infectious bacterium spread between lab mice, here the authors show that using the relative abundance of any changes rather than just whether they occurred can more precisely identify who likely infected who.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Inferring bacterial transmission dynamics using deep sequencing genomic surveillance data
    Madikay Senghore
    Hannah Read
    Priyali Oza
    Sarah Johnson
    Hemanoel Passarelli-Araujo
    Bradford P. Taylor
    Stephen Ashley
    Alex Grey
    Alanna Callendrello
    Robyn Lee
    Matthew R. Goddard
    Thomas Lumley
    William P. Hanage
    Siouxsie Wiles
    [J]. Nature Communications, 14
  • [2] Inferring demographic parameters in bacterial genomic data using Bayesian and hybrid phylogenetic methods
    Sebastian Duchene
    David A. Duchene
    Jemma L. Geoghegan
    Zoe A. Dyson
    Jane Hawkey
    Kathryn E. Holt
    [J]. BMC Evolutionary Biology, 18
  • [3] Inferring demographic parameters in bacterial genomic data using Bayesian and hybrid phylogenetic methods
    Duchene, Sebastian
    Duchene, David A.
    Geoghegan, Jemma L.
    Dyson, Zoe A.
    Hawkey, Jane
    Holt, Kathryn E.
    [J]. BMC EVOLUTIONARY BIOLOGY, 2018, 18
  • [4] Inferring Ancestral Recombination Graphs from Bacterial Genomic Data
    Vaughan, Timothy G.
    Welch, David
    Drummond, Alexei J.
    Biggs, Patrick J.
    George, Tessy
    French, Nigel P.
    [J]. GENETICS, 2017, 205 (02) : 857 - 870
  • [5] Inferring patterns of folktale diffusion using genomic data
    Bortolini, Eugenio
    Pagani, Luca
    Crema, Enrico R.
    Sarno, Stefania
    Barbieri, Chiara
    Boattini, Alessio
    Sazzini, Marco
    da Silva, Sara Graca
    Martini, Gessica
    Metspalu, Mait
    Pettener, Davide
    Luiselli, Donata
    Tehrani, Jamshid J.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (34) : 9140 - 9145
  • [6] Inferring the Direction of Introgression Using Genomic Sequence Data
    Thawornwattana, Yuttapong
    Huang, Jun
    Flouri, Tomas
    Mallet, James
    Yang, Ziheng
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2023, 40 (08)
  • [7] Leveraging genomic sequencing data to evaluate disease surveillance strategies
    Anderson, Benjamin
    Ouyang, Derek
    D'Agostino, Alexis
    Bonin, Brandon
    Smith, Emily
    Kraushaar, Vit
    Rudman, Sarah L.
    Ho, Daniel E.
    [J]. ISCIENCE, 2023, 26 (12)
  • [8] Challenges in Inferring Pneumococcal Conjugate Vaccine Impact From Bacterial Surveillance Data
    Deloria Knoll, Maria
    Bennett, Julia C.
    Yang, Yangyupei
    Garcia Quesada, Maria
    [J]. JOURNAL OF INFECTIOUS DISEASES, 2023, 227 (02): : 304 - 305
  • [9] Early detection and improved genomic surveillance of SARS-CoV-2 variants from deep sequencing data
    Ramazzotti, Daniele
    Maspero, Davide
    Angaroni, Fabrizio
    Spinelli, Silvia
    Antoniotti, Marco
    Piazza, Rocco
    Graudenzi, Alex
    [J]. ISCIENCE, 2022, 25 (06)
  • [10] Inferring patterns of influenza transmission in swine from multiple streams of surveillance data
    Strelioff, Christopher C.
    Vijaykrishna, Dhanasekaran
    Riley, Steven
    Guan, Yi
    Peiris, J. S. Malik
    Lloyd-Smith, James O.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2013, 280 (1762)