Microfluidics and fluorescence microscopy protocol to study the response of C. elegans to chemosensory stimuli

被引:1
|
作者
Bruggeman, Christine W. [1 ,2 ]
Peterman, Guus J. G. [1 ,2 ]
Peterman, Erwin J. G. [1 ,2 ]
机构
[1] Vrije Univ Amsterdam, LaserLaB, NL-1081 HV Amsterdam, Netherlands
[2] Vrije Univ Amsterdam, Dept Phys & Astron, NL-1081 HV Amsterdam, Netherlands
来源
STAR PROTOCOLS | 2023年 / 4卷 / 01期
基金
欧洲研究理事会;
关键词
Biophysics; Cell Biology; Microscopy; Model Organisms;
D O I
10.1016/j.xpro.2023.102121
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Here, we present a protocol to use microfluidics in combination with fluorescence microscopy to expose the C. elegans tail to chemosensory stimuli. We describe steps for the preparation of microfluidic chips and sample preparation through the sedation of C. elegans. We detail flow calibration and imaging of C. elegans through fluorescence microscopy to determine their molecular and/ or cellular response to chemosensory stimuli. This protocol can also be applied to amphid neurons by inserting the worm in the chip head-first. For complete details on the use and execution of this protocol, please refer to Bruggeman et al. (2022).1
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Modeling Behavioral Experiment Interaction and Environmental Stimuli for a Synthetic C. elegans
    Mujika, Andoni
    Leskovsky, Peter
    Alvarez, Roberto
    Otaduy, Miguel A.
    Epelde, Gorka
    FRONTIERS IN NEUROINFORMATICS, 2017, 11
  • [32] A recurrent neural network model of C. elegans responses to aversive stimuli
    Lanza, Enrico
    Di Angelantonio, Silvia
    Gosti, Giorgio
    Ruocco, Giancarlo
    Folli, Viola
    NEUROCOMPUTING, 2021, 430 : 1 - 13
  • [33] A recurrent neural network model of C. elegans responses to aversive stimuli
    Lanza, Enrico
    Di Angelantonio, Silvia
    Gosti, Giorgio
    Ruocco, Giancarlo
    Folli, Viola
    Neurocomputing, 2021, 430 : 1 - 13
  • [34] Expansion microscopy reveals subdomains in C. elegans germ granules
    Suen, Kin M.
    Sheard, Thomas M. D.
    Lin, Chi-Chuan
    Milonaityte, Dovile
    Jayasinghe, Izzy
    Ladbury, John E.
    LIFE SCIENCE ALLIANCE, 2023, 6 (04)
  • [35] Optofluidic device for light-sheet fluorescence microscopy of C. elegans with a conventional wide-field microscope
    Behrouzi, Mehran
    Rahimpouresfahani, Faraz
    Youssef, Khaled
    Rezai, Pouya
    Tabatabaei, Nima
    IMAGING, MANIPULATION, AND ANALYSIS OF BIOMOLECULES, CELLS, AND TISSUES XX, 2022, 11964
  • [36] A proximity labeling protocol to probe proximity interactions in C. elegans
    Sanchez, Ariana D.
    Feldman, Jessica L.
    STAR PROTOCOLS, 2021, 2 (04):
  • [37] NemaFlex: a microfluidics-based technology for standardized measurement of muscular strength of C. elegans
    Rahman, Mizanur
    Hewitt, Jennifer E.
    Van-Bussel, Frank
    Edwards, Hunter
    Blawzdziewicz, Jerzy
    Szewczyk, Nathaniel J.
    Driscoll, Monica
    Vanapalli, Siva A.
    LAB ON A CHIP, 2018, 18 (15) : 2187 - 2201
  • [38] Dynamic temperature control in microfluidics for in vivo imaging of cold-sensing in C. elegans
    Lee, Sol Ah
    Cho, Yongmin
    Schafer, William R.
    Lu, Hang
    BIOPHYSICAL JOURNAL, 2024, 123 (08) : 947 - 956
  • [39] Automated screening of C. elegans neurodegeneration mutants enabled by microfluidics and image analysis algorithms
    Caceres, Ivan de Carlos
    Porto, Daniel A.
    Gallotta, Ivan
    Santonicola, Pamela
    Rodriguez-Cordero, Josue
    Di Schiavi, Elia
    Lu, Hang
    INTEGRATIVE BIOLOGY, 2018, 10 (09) : 539 - 548
  • [40] Chemosensory neurons function in parallel to mediate a pheromone response in C-elegans
    Schackwitz, WS
    Inoue, T
    Thomas, JH
    NEURON, 1996, 17 (04) : 719 - 728