Discussion of "Saving Storage in Climate Ensembles: A Model-Based Stochastic Approach"

被引:0
|
作者
Datta, Abhirup [1 ]
机构
[1] Johns Hopkins Univ, Dept Biostat, Baltimore, MD 21218 USA
关键词
Machine learning; Deep neural network; Variational autoencoders; Climate data compression;
D O I
10.1007/s13253-023-00539-0
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Huang et al (J Agric Biol Environ Stat, 2023, https://doi.org/10.1007/s13253-022-00 518-x) a suite of statistical models for storage-efficient climate model emulation. In this discussion, I review and explore possibility of using machine learning methods, in particular, deep neural network (DNN)-based variational autoencoders (VAE) for the same task of spatio-temporal climate data compression. I discuss the pros and cons of the statistical and the machine learning paradigms.
引用
收藏
页码:352 / 357
页数:6
相关论文
共 50 条