Coexistence of extended and localized states in finite-sized mosaic Wannier-Stark lattices

被引:3
|
作者
Gao, Jun [1 ]
Khaymovich, Ivan M. [2 ,3 ,4 ]
Iovan, Adrian [1 ]
Wang, Xiao-Wei [5 ,6 ]
Krishna, Govind [1 ]
Xu, Ze-Sheng [1 ]
Tortumlu, Emrah [1 ]
Balatsky, Alexander V. [2 ,3 ,7 ]
Zwiller, Val [1 ]
Elshaari, Ali W. [1 ]
机构
[1] Albanova Univ Ctr, KTH Royal Inst Technol, Dept Appl Phys, Roslagstullsbacken 21, S-10691 Stockholm, Sweden
[2] Stockholm Univ, Nordita, Hannes Alfvens vag 12, SE-10691 Stockholm, Sweden
[3] KTH Royal Inst Technol, Hannes Alfvens vag 12, SE-10691 Stockholm, Sweden
[4] Russian Acad Sci, Inst Phys Microstruct, GSP-105, Nizhnii Novgorod 603950, Russia
[5] Shanghai Jiao Tong Univ, Sch Phys & Astron, Ctr Integrated Quantum Informat Technol IQIT, Shanghai 200240, Peoples R China
[6] Shanghai Jiao Tong Univ, State Key Lab Adv Opt Commun Syst & Networks, Shanghai 200240, Peoples R China
[7] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA
基金
上海市自然科学基金; 欧洲研究理事会;
关键词
ANDERSON LOCALIZATION; MOBILITY EDGE; ELECTRONS;
D O I
10.1103/PhysRevB.108.L140202
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quantum transport and localization are fundamental concepts in condensed matter physics. It is commonly believed that in one-dimensional systems, the existence of mobility edges is highly dependent on disorder. Recently, there has been a debate over the existence of an exact mobility edge in a modulated mosaic model without quenched disorder, the so-called mosaic Wannier-Stark lattice. Here, we experimentally implement such disorder-free mosaic photonic lattices using a silicon photonics platform. By creating a synthetic electric field, we could observe energy-dependent coexistence of both extended and localized states in a finite number of waveguides. The Wannier-Stark ladder emerges when the resulting potential is strong enough, and can be directly probed by exciting different spatial modes of the lattice. Our studies provide the experimental proof of coexisting sets of strongly localized and conducting (though weakly localized) states in finite-sized mosaic Wannier-Stark lattices, which hold the potential to encode high-dimensional quantum resources with compact and robust structures.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Absence of mobility edges in mosaic Wannier-Stark lattices
    Longhi, Stefano
    [J]. PHYSICAL REVIEW B, 2023, 108 (06)
  • [2] Wannier-Stark states in finite superlattices
    Kast, M
    Pacher, C
    Strasser, G
    Gornik, E
    Werner, WSM
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (13)
  • [3] Coexistence of ergodic and weakly ergodic states in finite-height Wannier-Stark ladders
    Wei, Xingbo
    Wu, Liangqing
    Feng, Kewei
    Liu, Tong
    Zhang, Yunbo
    [J]. PHYSICAL REVIEW A, 2024, 109 (02)
  • [4] Wannier-Stark flatbands in Bravais lattices
    Mallick, Arindam
    Chang, Nana
    Maimaiti, Wulayimu
    Flach, Sergej
    Andreanov, Alexei
    [J]. PHYSICAL REVIEW RESEARCH, 2021, 3 (01):
  • [5] Lifetime of Wannier-Stark states
    Gluck, M
    Kolovsky, AR
    Korsch, HJ
    [J]. PHYSICAL REVIEW LETTERS, 1999, 83 (05) : 891 - 894
  • [6] WANNIER-STARK DENSITY OF STATES
    KTITOROV, SA
    SIMIN, GS
    SINDALOVSKII, VY
    [J]. FIZIKA TVERDOGO TELA, 1976, 18 (04): : 1140 - 1143
  • [7] WANNIER-STARK STATES IN NANOSTRUCTURES
    FAGOTTO, EAM
    SCHULZ, PA
    BRUM, JA
    [J]. SOLID-STATE ELECTRONICS, 1994, 37 (4-6) : 1171 - 1174
  • [8] Lifetime of Wannier-Stark states
    Gluck, M.
    Kolovsky, A.R.
    Korsch, H.J.
    [J]. Physical Review Letters, 83 (05):
  • [9] FRACTIONAL WANNIER-STARK STATES
    FOLTIN, J
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1986, 19 (07): : L151 - L153
  • [10] Wannier-Stark states of a quantum particle in 2D lattices
    Glück, M
    Keck, F
    Kolovsky, AR
    Korsch, HJ
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (14) : 3116 - 3119