Adversarial Counterfactual Visual Explanations

被引:5
|
作者
Jeanneret, Guillaume [1 ]
Simon, Loic [1 ]
Jurie, Frederic [1 ]
机构
[1] Univ Caen Normandie, ENSICAEN, CNRS, Caen, France
关键词
D O I
10.1109/CVPR52729.2023.01576
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Counterfactual explanations and adversarial attacks have a related goal: flipping output labels with minimal perturbations regardless of their characteristics. Yet, adversarial attacks cannot be used directly in a counterfactual explanation perspective, as such perturbations are perceived as noise and not as actionable and understandable image modifications. Building on the robust learning literature, this paper proposes an elegant method to turn adversarial attacks into semantically meaningful perturbations, without modifying the classifiers to explain. The proposed approach hypothesizes that Denoising Diffusion Probabilistic Models are excellent regularizers for avoiding high-frequency and out-of-distribution perturbations when generating adversarial attacks. The paper's key idea is to build attacks through a diffusion model to polish them. This allows studying the target model regardless of its robustification level. Extensive experimentation shows the advantages of our counterfactual explanation approach over current State-of-the-Art in multiple testbeds.
引用
收藏
页码:16425 / 16435
页数:11
相关论文
共 50 条
  • [1] Generative Adversarial Networks for OCT Counterfactual Visual Explanations in Ophthalmic Imaging
    Woodward-Court, Peter
    Keane, Pearse Andrew
    Alexander, Daniel
    Zhou, Yukun
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [2] Counterfactual Visual Explanations
    Goyal, Yash
    Wu, Ziyan
    Ernst, Jan
    Batra, Dhruv
    Parikh, Devi
    Lee, Stefan
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [3] Faithful Counterfactual Visual Explanations (FCVE)
    Khan, Bismillah
    Tariq, Syed Ali
    Zia, Tehseen
    Ahsan, Muhammad
    Windridge, David
    [J]. KNOWLEDGE-BASED SYSTEMS, 2024, 294
  • [4] Contrastive counterfactual visual explanations with overdetermination
    Adam White
    Kwun Ho Ngan
    James Phelan
    Kevin Ryan
    Saman Sadeghi Afgeh
    Constantino Carlos Reyes-Aldasoro
    Artur d’Avila Garcez
    [J]. Machine Learning, 2023, 112 : 3497 - 3525
  • [5] Contrastive counterfactual visual explanations with overdetermination
    White, Adam
    Ngan, Kwun Ho
    Phelan, James
    Ryan, Kevin
    Afgeh, Saman Sadeghi
    Reyes-Aldasoro, Constantino Carlos
    Garcez, Artur d'Avila
    [J]. MACHINE LEARNING, 2023, 112 (09) : 3497 - 3525
  • [6] Generating Natural Counterfactual Visual Explanations
    Zhao, Wenqi
    Oyama, Satoshi
    Kurihara, Masahito
    [J]. PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 5204 - 5205
  • [7] The Intriguing Relation Between Counterfactual Explanations and Adversarial Examples
    Freiesleben, Timo
    [J]. MINDS AND MACHINES, 2022, 32 (01) : 77 - 109
  • [8] The Intriguing Relation Between Counterfactual Explanations and Adversarial Examples
    Timo Freiesleben
    [J]. Minds and Machines, 2022, 32 : 77 - 109
  • [9] Sparse Visual Counterfactual Explanations in Image Space
    Boreiko, Valentyn
    Augustin, Maximilian
    Croce, Francesco
    Berens, Philipp
    Hein, Matthias
    [J]. PATTERN RECOGNITION, DAGM GCPR 2022, 2022, 13485 : 133 - 148
  • [10] Counterfactual attribute-based visual explanations for classification
    Sadaf Gulshad
    Arnold Smeulders
    [J]. International Journal of Multimedia Information Retrieval, 2021, 10 : 127 - 140