Optimizing margin distribution for online multi-label classification

被引:0
|
作者
Zhai, Tingting [1 ,2 ]
Hu, Kunyong [1 ,2 ]
机构
[1] Yangzhou Univ, Coll Informat Engn, Yangzhou 225127, Peoples R China
[2] Yangzhou Univ, Jiangsu Prov Engn Res Ctr Knowledge Management & I, Yangzhou 225127, Peoples R China
基金
中国国家自然科学基金;
关键词
Online multi-label classification; Margin distribution; Online learning; Multi-label learning; Adaptive label thresholding;
D O I
10.1007/s12530-023-09536-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a novel online multi-label classification approach that focuses on optimizing the distribution of multi-label classification margins. The objective is to find a new multi-label model in each online round that maximizes the margin mean and minimizes the margin standard deviation while remaining close to the current model. To address this optimization problem, two methods are proposed. The first method employs dual coordinate descent to solve the dual problem iteratively, while the second method utilizes online gradient descent to solve the first-order approximation of the primal problem efficiently. Experimental evaluations are conducted on nine benchmark datasets, using seven common multi-label performance metrics. The results demonstrate the superiority of our proposed approach over existing state-of-the-art methods, affirming the effectiveness and efficiency of optimizing the distribution of multi-label classification margins.
引用
收藏
页码:1033 / 1042
页数:10
相关论文
共 50 条
  • [1] Online Multi-Label Classification with Scalable Margin Robust to Missing Labels
    Zou, Yizhang
    Hu, Xuegang
    Li, Peipei
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON KNOWLEDGE GRAPH, ICKG, 2023, : 274 - 281
  • [2] Margin attribute reductions for multi-label classification
    Xiaodong Fan
    Xiangyue Chen
    Changzhong Wang
    Yang Wang
    Ying Zhang
    [J]. Applied Intelligence, 2022, 52 : 6079 - 6092
  • [3] Margin attribute reductions for multi-label classification
    Fan, Xiaodong
    Chen, Xiangyue
    Wang, Changzhong
    Wang, Yang
    Zhang, Ying
    [J]. APPLIED INTELLIGENCE, 2022, 52 (06) : 6079 - 6092
  • [4] Multi-label optimal margin distribution machine
    Zhi-Hao Tan
    Peng Tan
    Yuan Jiang
    Zhi-Hua Zhou
    [J]. Machine Learning, 2020, 109 : 623 - 642
  • [5] Multi-label optimal margin distribution machine
    Tan, Zhi-Hao
    Tan, Peng
    Jiang, Yuan
    Zhou, Zhi-Hua
    [J]. MACHINE LEARNING, 2020, 109 (03) : 623 - 642
  • [6] A label compression method for online multi-label classification
    Ahmadi, Zahra
    Kramer, Stefan
    [J]. PATTERN RECOGNITION LETTERS, 2018, 111 : 64 - 71
  • [7] Online Metric Learning for Multi-Label Classification
    Gong, Xiuwen
    Yuan, Dong
    Bao, Wei
    [J]. THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 4012 - 4019
  • [8] A Label Distribution Topic Model for Multi-label Classification
    Liu, Lin
    Tang, Lin
    [J]. 2019 4TH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION PROCESSING (ICIIP 2019), 2019, : 52 - 57
  • [9] Partial Multi-Label Optimal Margin Distribution Machine
    Cao, Nan
    Zhang, Teng
    Jin, Hai
    [J]. PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 2198 - 2204
  • [10] Online Multi-label Classification with Adaptive Model Rules
    Sousa, Ricardo
    Gama, Joao
    [J]. ADVANCES IN ARTIFICIAL INTELLIGENCE, CAEPIA 2016, 2016, 9868 : 58 - 67