Estimation of diffusion time with the Shannon entropy approach

被引:5
|
作者
Cincotta, Pablo M. [1 ]
Giordano, Claudia M. [1 ]
机构
[1] Univ Nacl La Plata, Fac Ciencias Astron & Geofis, Grp Caos Sistemas Hamiltonianos, RA-BI1900FW La Plata, Argentina
关键词
ARNOLD DIFFUSION; STABILITY;
D O I
10.1103/PhysRevE.107.064101
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The present work revisits and improves the Shannon entropy approach when applied to the estimation of an instability timescale for chaotic diffusion in multidimensional Hamiltonian systems. This formulation has already been proved efficient in deriving the diffusion timescale in 4D symplectic maps and planetary systems, when the diffusion proceeds along the chaotic layers of the resonance's web. Herein the technique is used to estimate the diffusion rate in the Arnold model, i.e., of the motion along the homoclinic tangle of the so-called guiding resonance for several values of the perturbation parameter such that the overlap of resonances is almost negligible. Thus differently from the previous studies, the focus is fixed on deriving a local timescale related to the speed of an Arnold diffusion-like process. The comparison of the current estimates with determinations of the diffusion time obtained by straightforward numerical integration of the equations of motion reveals a quite good agreement.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Statistical Estimation of the Shannon Entropy
    Alexander BULINSKI
    Denis DIMITROV
    [J]. Acta Mathematica Sinica,English Series, 2019, (01) : 17 - 46
  • [2] Bayesian estimation of Shannon entropy
    Yuan, L
    Kesavan, HK
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1997, 26 (01) : 139 - 148
  • [3] Statistical Estimation of the Shannon Entropy
    Alexander Bulinski
    Denis Dimitrov
    [J]. Acta Mathematica Sinica, English Series, 2019, 35 : 17 - 46
  • [4] Statistical Estimation of the Shannon Entropy
    Bulinski, Alexander
    Dimitrov, Denis
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2019, 35 (01) : 17 - 46
  • [5] Adaptive Estimation of Shannon Entropy
    Han, Yanjun
    Jiao, Jiantao
    Weissman, Tsachy
    [J]. 2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 1372 - 1376
  • [6] Statistical Estimation of the Shannon Entropy
    Alexander BULINSKI
    Denis DIMITROV
    [J]. ActaMathematicaSinica., 2019, 35 (01) - 46
  • [7] STATISTICAL ESTIMATION OF CONDITIONAL SHANNON ENTROPY
    Bulinske, Alexander
    Kozhevin, Alexey
    [J]. ESAIM-PROBABILITY AND STATISTICS, 2019, 23 : 350 - 386
  • [8] Shannon Entropy Estimation for Linear Processes
    Fortune, Timothy
    Sang, Hailin
    [J]. JOURNAL OF RISK AND FINANCIAL MANAGEMENT, 2020, 13 (09)
  • [9] Shannon Entropy and Diffusion Coefficient in Parity-Time Symmetric Quantum Walks
    Tian, Zhiyu
    Liu, Yang
    Luo, Le
    [J]. ENTROPY, 2021, 23 (09)
  • [10] A Review of Shannon and Differential Entropy Rate Estimation
    Feutrill, Andrew
    Roughan, Matthew
    [J]. ENTROPY, 2021, 23 (08)