Nonparametric inferences for kurtosis and conditional kurtosis

被引:0
|
作者
谢潇衡 [1 ]
何幼桦 [1 ]
机构
[1] Department of Mathematics,College of Sciences,Shanghai University
基金
中国国家自然科学基金;
关键词
conditional probability density function(PDF); kernel estimate; kurtosis; conditional kurtosis; heavy tail;
D O I
暂无
中图分类号
F224 [经济数学方法];
学科分类号
0701 ; 070104 ;
摘要
Under the assumption of strictly stationary process,this paper proposes a nonparametric model to test the kurtosis and conditional kurtosis for risk time series.We apply this method to the daily returns of S&P500 index and the Shanghai Composite Index,and simulate GARCH data for verifying the effciency of the presented model.Our results indicate that the risk series distribution is heavily tailed,but the historical information can make its future distribution light-tailed.However the far future distribution’s tails are little affected by the historical data.
引用
收藏
页码:225 / 232
页数:8
相关论文
共 50 条
  • [1] Nonparametric inferences for kurtosis and conditional kurtosis
    谢潇衡
    何幼桦
    [J]. Journal of Shanghai University(English Edition), 2009, 13 (03) : 225 - 232
  • [2] Nonparametric multivariate kurtosis and tailweight measures
    Wang, J
    Serfling, R
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2005, 17 (04) : 441 - 456
  • [3] Autoregresive conditional volatility, skewness and kurtosis
    Leon, Angel
    Rubio, Gonzalo
    Serna, Gregorio
    [J]. QUARTERLY REVIEW OF ECONOMICS AND FINANCE, 2005, 45 (4-5): : 599 - 618
  • [4] Conditional Skewness, Kurtosis, and Density Specification Testing: Moment-Based versus Nonparametric Tests
    Ergun, A. Tolga
    Jun, Jongbyung
    [J]. STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2010, 14 (03):
  • [5] The role of autoregressive conditional skewness and kurtosis in the estimation of conditional VaR
    Bali, Turan G.
    Mo, Hengyong
    Tang, Yi
    [J]. JOURNAL OF BANKING & FINANCE, 2008, 32 (02) : 269 - 282
  • [6] Modeling multivariate conditional variance skewness kurtosis
    Wang, Chun-Feng
    Zhuang, Hong-Gang
    Fang, Zhen-Ming
    Lu, Tao
    [J]. Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2010, 30 (02): : 324 - 331
  • [7] Entropy densities with an application to autoregressive conditional skewness and kurtosis
    Rockinger, M
    Jondeau, E
    [J]. JOURNAL OF ECONOMETRICS, 2002, 106 (01) : 119 - 142
  • [8] Conditional volatility, skewness, and kurtosis: existence, persistence, and comovements
    Jondeau, E
    Rockinger, M
    [J]. JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2003, 27 (10): : 1699 - 1737
  • [9] The Role of the Conditional Skewness and Kurtosis in VIX Index Valuation
    Lalancette, Simon
    Simonato, Jean-Guy
    [J]. EUROPEAN FINANCIAL MANAGEMENT, 2017, 23 (02) : 325 - 354
  • [10] Assessing the effect of kurtosis deviations from Gaussianity on conditional distributions
    Gomez-Villegas, M. A.
    Main, P.
    Navarro, H.
    Susi, R.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (21) : 10499 - 10505