Retrieval of canopy biophysical variables from remote sensing data using contextual information

被引:0
|
作者
肖志强 [1 ,2 ]
王锦地 [1 ,2 ]
梁顺林 [3 ]
屈永华 [1 ,2 ]
万华伟 [1 ,2 ]
机构
[1] State Key Laboratory of Remote Sensing Science Jointly Sponsored by Beijing Normal University and Institute of Remote Sensing Applications,Chinese Academy of Sciences
[2] School of Geography,Beijing Normal University
[3] Department of Geography,University of Maryland,College Park
基金
中国国家自然科学基金;
关键词
inverse problem; canopy biophysical variables; contextual information; leaf area index;
D O I
暂无
中图分类号
TP751 [图像处理方法];
学科分类号
081002 ;
摘要
In order to improve the accuracy of biophysical parameters retrieved from remotely sensing data, a new algorithm was presented by using spatial contextual to estimate canopy variables from high-resolution remote sensing images. The developed algorithm was used for inversion of leaf area index (LAI) from Enhanced Thematic Mapper Plus (ETM+) data by combining with optimization method to minimize cost functions. The results show that the distribution of LAI is spatially consistent with the false composition imagery from ETM+ and the accuracy of LAI is significantly improved over the results retrieved by the conventional pixelwise retrieval methods, demonstrating that this method can be reliably used to integrate spatial contextual information for inverting LAI from high-resolution remote sensing images.
引用
收藏
页码:877 / 881
页数:5
相关论文
共 50 条
  • [1] Retrieval of canopy biophysical variables from remote sensing data using contextual information
    Xiao Zhi-qiang
    Wang Jin-di
    Liang Shun-lin
    Qu Yong-hua
    Wan Hua-wei
    [J]. JOURNAL OF CENTRAL SOUTH UNIVERSITY OF TECHNOLOGY, 2008, 15 (06): : 877 - 881
  • [2] Retrieval of canopy biophysical variables from remote sensing data using contextual information
    Zhi-qiang Xiao
    Jin-di Wang
    Shun-lin Liang
    Yong-hua Qu
    Hua-wei Wan
    [J]. Journal of Central South University of Technology, 2008, 15 : 877 - 881
  • [3] Validation of neural net techniques to estimate canopy biophysical variables from remote sensing data
    Weiss, M
    Baret, F
    Leroy, M
    Hautecoeur, O
    Bacour, C
    Prévot, L
    Bruguier, N
    [J]. AGRONOMIE, 2002, 22 (06): : 547 - 553
  • [4] Remote sensing of canopy dynamics and biophysical variables estimation of corn in Michigan
    Elwadie, ME
    Pierce, FJ
    Qi, J
    [J]. AGRONOMY JOURNAL, 2005, 97 (01) : 99 - 105
  • [5] Coupling remote sensing observation models and a growth model for improved retrieval of (geo)biophysical information from optical remote sensing data
    Bach, H
    Verhoef, W
    Schneider, K
    [J]. REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY II, 2001, 4171 : 1 - 11
  • [6] Remote sensing of forest biophysical variables using HyMap imaging spectrometer data
    Schlerf, M
    Atzberger, C
    Hill, J
    [J]. REMOTE SENSING OF ENVIRONMENT, 2005, 95 (02) : 177 - 194
  • [7] Monitoring of Irrigation Schemes by Remote Sensing: Phenology versus Retrieval of Biophysical Variables
    Akdim, Nadia
    Alfieri, Silvia Maria
    Habib, Adnane
    Choukri, Abdeloihab
    Cheruiyot, Elijah
    Labbassi, Kamal
    Menenti, Massimo
    [J]. REMOTE SENSING, 2014, 6 (06) : 5815 - 5851
  • [8] Retrieval of canopy biophysical variables from bidirectional reflectance -: Using prior information to solve the ill-posed inverse problem
    Combal, B
    Baret, F
    Weiss, M
    Trubuil, A
    Macé, D
    Pragnère, A
    Myneni, R
    Knyazikhin, Y
    Wang, L
    [J]. REMOTE SENSING OF ENVIRONMENT, 2003, 84 (01) : 1 - 15
  • [9] Retrieval Of canopy Chlorophyll Content For Spring Corn Using Multispectral Remote Sensing Data
    Xu Jin
    Meng Jihua
    [J]. THIRD INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS 2014), 2014, : 508 - 512
  • [10] Cost-effectiveness of vegetation biophysical parameters retrieval from remote sensing data
    Vuolo, F.
    D'Urso, G.
    Dini, L.
    [J]. REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY VIII, 2006, 6359