基于Faster-RCNN的车牌检测

被引:10
|
作者
艾曼
机构
[1] 华中科技大学自动化学院
关键词
车牌检测; Faster-RCNN; ZF; VGG-16; ResNet-101;
D O I
暂无
中图分类号
TP391.41 []; U495 [电子计算机在公路运输和公路工程中的应用];
学科分类号
080203 ; 0838 ;
摘要
车牌识别是智能交通中非常重要的应用,而车牌检测又是车牌识别的关键。针对现有的车牌识别系统在遇到复杂条件,例如暗光、遮挡、多车牌、能见度低等情况时,难以有效地定位车牌,提出了基于Faster-RCNN目标检测模型与ZF、VGG-16以及ResNet-101 3种卷积神经网络分别结合的方法。由于车牌没有公开的数据库,在自己准备的12740张车牌图像上进行实验,结果显示基于Faster-RCNN与ResNet-101结合的模型的准确率达到了97.2%,高于其余两种结合模型,明显优于传统的车牌检测方法,并避免了复杂的预处理,具有较好的实用性。
引用
收藏
页码:174 / 177
页数:4
相关论文
共 39 条
  • [1] Measuring the Objectness of Image Windows. Bogdan Alexe,Thomas Deselaers,Vittorio Ferrari. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2012
  • [2] You Only Look Once:Unified,Real-Time Object Detection. REDMON J,DIVVALA S,GIRSHICK R,et al. IEEE Conference on Computer Vision&Pattern Recognition 2016 . 2016
  • [3] Selective Search for Object Recognition
    Uijlings, J. R. R.
    van de Sande, K. E. A.
    Gevers, T.
    Smeulders, A. W. M.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2013, 104 (02) : 154 - 171
  • [4] Deep Residual Learning for Image Recognition. He K,Zhang X,Ren S.et al. IEEE Conference on Computer Vision and Pattern Recognition . 2016
  • [5] BING:Binarized Normed Gradients for Objectness Estimation at 300fps. Cheng M M,Zhang Z,Lin W Y,et al. Computer Vision and Pattern Recognition . 2014
  • [6] An algorithm for accuracy enhancement of license plate recognition
    Zheng, Lihong
    He, Xiangjian
    Samali, Bijan
    Yang, Laurence T.
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2013, 79 (02) : 245 - 255
  • [7] 基于边缘颜色对的车牌定位新方法
    李文举
    梁德群
    张旗
    樊鑫
    [J]. 计算机学报, 2004, (02) : 204 - 208
  • [8] Mask R-CNN. Dollar K H G G P,Girshick R. Computer Vision and Pattern Recognition . 2017
  • [9] A survey of urban vehicular sensing platforms
    Lee, Uichin
    Gerla, Mario
    [J]. COMPUTER NETWORKS, 2010, 54 (04) : 527 - 544
  • [10] Selective Search for Object Recognition
    Uijlings, J. R. R.
    van de Sande, K. E. A.
    Gevers, T.
    Smeulders, A. W. M.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2013, 104 (02) : 154 - 171