GRADIENT ESTIMATES AND LIOUVILLE THEOREMS FOR LINEAR AND NONLINEAR PARABOLIC EQUATIONS ON RIEMANNIAN MANIFOLDS

被引:0
|
作者
朱晓宝 [1 ]
机构
[1] Department of Mathematics, School of Information, Renmin University of China
基金
美国国家科学基金会;
关键词
Gradient estimate; linear parabolic equation; nonlinear parabolic equation; Liouville type theorem;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In this article, we will derive local elliptic type gradient estimates for positive solutions of linear parabolic equations(?-?/(?t))u(x, t) + h(x,t)u(x,t) = 0 and nonlinear parabolic equations(?-?-/(?t))u(x,t) + h(x, t)u~p(x,t) = 0(p > 1) on Riemannian manifolds.As applications, we obtain some theorems of Liouville type for positive ancient solutions of such equations. Our results generalize that of Souplet-Zhang([1], Bull. London Math. Soc.38(2006), 1045-1053) and the author([2], Nonlinear Anal. 74(2011), 5141-5146).
引用
收藏
页码:514 / 526
页数:13
相关论文
共 50 条