LOCAL AND PARALLEL FINITE ELEMENT METHOD FOR THE MIXED NAVIER-STOKES/DARCY MODEL WITH BEAVERS-JOSEPH INTERFACE CONDITIONS

被引:0
|
作者
杜光芝 [1 ]
左立云 [2 ]
机构
[1] School of Mathematics and Statistics, Shandong Normal University
[2] School of Mathematical Sciences, University of Jinan
关键词
Navier-Stokes equations; Darcy’s law; two-grid algorithm; Beavers-Joseph interface conditions; parallel finite element method;
D O I
暂无
中图分类号
O241.82 [偏微分方程的数值解法]; O35 [流体力学];
学科分类号
070102 ; 080103 ; 080704 ;
摘要
In this paper, we consider the mixed Navier-Stokes/Darcy model with BeaversJoseph interface conditions. Based on two-grid discretizations, a local and parallel finite element algorithm for this mixed model is proposed and analyzed. Optimal errors are obtained and numerical experiments are presented to show the efficiency and effectiveness of the local and parallel finite element algorithm.
引用
收藏
页码:1331 / 1347
页数:17
相关论文
共 50 条
  • [1] LOCAL AND PARALLEL FINITE ELEMENT METHOD FOR THE MIXED NAVIER-STOKES/DARCY MODEL WITH BEAVERS-JOSEPH INTERFACE CONDITIONS
    Du, Guangzhi
    Zuo, Liyun
    [J]. ACTA MATHEMATICA SCIENTIA, 2017, 37 (05) : 1331 - 1347
  • [2] LOCAL AND PARALLEL FINITE ELEMENT METHOD FOR THE MIXED NAVIER-STOKES/DARCY MODEL WITH BEAVERS-JOSEPH INTERFACE CONDITIONS
    杜光芝
    左立云
    [J]. Acta Mathematica Scientia(English Series), 2017, 37 (05) : 1331 - 1347
  • [3] A modified local and parallel finite element method for the coupled Stokes-Darcy model with the Beavers-Joseph interface condition
    Xinhui Wang
    Guangzhi Du
    Yi Li
    [J]. Numerical Algorithms, 2023, 93 : 815 - 831
  • [4] A modified local and parallel finite element method for the coupled Stokes-Darcy model with the Beavers-Joseph interface condition
    Wang, Xinhui
    Du, Guangzhi
    Li, Yi
    [J]. NUMERICAL ALGORITHMS, 2023, 93 (02) : 815 - 831
  • [5] Numerical Analysis for the Mixed Navier-Stokes and Darcy Problem with the Beavers-Joseph Interface Condition
    Zuo, Liyun
    Hou, Yanren
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (04) : 1009 - 1030
  • [6] Finite element method for the stationary dual-porosity Navier-Stokes system with Beavers-Joseph interface conditions
    Qiu, Meilan
    Qing, Fang
    Yu, Xijun
    Hou, Jiangyong
    Li, Dewang
    Zhao, Xiaolong
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 141 : 221 - 241
  • [7] FINITE ELEMENT APPROXIMATIONS FOR STOKES-DARCY FLOW WITH BEAVERS-JOSEPH INTERFACE CONDITIONS
    Cao, Yanzhao
    Gunzburger, Max
    Hu, Xiaolong
    Hua, Fei
    Wang, Xiaoming
    Zhao, Weidong
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 47 (06) : 4239 - 4256
  • [8] Local and parallel finite element methods for the mixed Navier-Stokes/Darcy model
    Du, Guangzhi
    Hou, Yanren
    Zuo, Liyun
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (07) : 1155 - 1172
  • [9] Local and parallel finite element methods based on two-grid discretizations for the unsteady mixed Stokes-Darcy model with the Beavers-Joseph interface condition
    Du, Guangzhi
    Mi, Shilin
    Wang, Xinhui
    [J]. NUMERICAL ALGORITHMS, 2023, 94 (04) : 1883 - 1918
  • [10] Local and parallel finite element methods based on two-grid discretizations for the unsteady mixed Stokes-Darcy model with the Beavers-Joseph interface condition
    Guangzhi Du
    Shilin Mi
    Xinhui Wang
    [J]. Numerical Algorithms, 2023, 94 : 1883 - 1918