Numerical Optimization of Sensitivity in Fourier Domain Optical Coherence Tomography

被引:0
|
作者
Shen Jiawei [1 ]
Sun Na [2 ]
Xing Fangjian [1 ]
Guo Zixian [1 ]
Shi Junpeng [1 ]
机构
[1] School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University
[2] School of Physics and Technology, Nanjing Normal
关键词
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
The details of cross-sectional images based on Fourier domain optical coherence tomography play an important role that is limited to nonuniform sampling, spectral dispersion, inverse discrete Fourier transform(IDFT), and noise. In this section, we propose a method for emphasizing axial details to the greatest extent possible. After removing spectral dispersion, uniform discretization in the wavenumber domain is performed based on two interferograms via a specified offset in depth, with no spectrum calibration. The sampling number in IDFT is optimized to improve axial sensitivity up to1. 62 dB. The proposed process has the advantage of being based on numerical computation rather than hardware calibration, which benefits cost, accuracy, and efficiency.
引用
收藏
页码:497 / 502
页数:6
相关论文
共 14 条
  • [1] Spectral calibration in spectral domain optical coherence tomography.[J].王凯;丁志华;.Chinese Optics Letters.2008, 12
  • [2] Design and optimization of line-field optical coherence tomography at visible wavebands
    Xing, Fangjian
    Lee, Jang-Hoon
    Polucha, Collin
    Lee, Jonghwan
    [J]. BIOMEDICAL OPTICS EXPRESS, 2021, 12 (03): : 1351 - 1365
  • [3] Spectrometer calibration with reduced dispersion for optical coherence tomography
    Wu, Xiaocui
    Ye, Xinrong
    Yu, Dan
    Yu, Jianhong
    Huang, Yinrui
    Tan, Haishu
    Qin, Jia
    An, Lin
    [J]. OSA CONTINUUM, 2020, 3 (08) : 2156 - 2165
  • [4] Depth-dependent dispersion compensation for full-depth OCT image
    Pan, Liuhua
    Wang, Xiangzhao
    Li, Zhongliang
    Zhang, Xiangyang
    Bu, Yang
    Nan, Nan
    Chen, Yan
    Wang, Xuan
    Dai, Fengzhao
    [J]. OPTICS EXPRESS, 2017, 25 (09): : 10345 - 10354
  • [5] Quantitative microvascular hemoglobin mapping using visible light spectroscopic Optical Coherence Tomography
    Chong, Shau Poh
    Merkle, Conrad W.
    Leahy, Conor
    Radhakrishnan, Harsha
    Srinivasan, Vivek J.
    [J]. BIOMEDICAL OPTICS EXPRESS, 2015, 6 (04): : 1429 - 1450
  • [6] Enhanced optical clearing of skin in vivo and optical coherence tomography in-depth imaging
    Wen, Xiang
    Jacques, Steven L.
    Tuchin, Valery V.
    Zhu, Dan
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2012, 17 (06)
  • [7] Full-range; high-speed; high-resolution 1 microm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye..[J].Makita Shuichi;Fabritius Tapio;Yasuno Yoshiaki.Optics express.2008, 12
  • [8] In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography
    Srinivasan, V. J.
    Wojtkowski, M.
    Fujimoto, J. G.
    Duker, J. S.
    [J]. OPTICS LETTERS, 2006, 31 (15) : 2308 - 2310
  • [9] Densely folded spectral images of a CCD spectrometer working in the full 200–1000 nm wavelength range with high resolution.[J].Yue-Rui Chen;Bin Sun;Tao Han;Yu-Fei Kong;Cong-Hui Xu;Peng Zhou;Xiao-Fan Li;Song-You Wang;Yu-Xiang Zheng;Liang-Yao Chen.Optics Express.2005, 25
  • [10] Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation
    Wojtkowski, M
    Srinivasan, VJ
    Ko, TH
    Fujimoto, JG
    Kowalczyk, A
    Duker, JS
    [J]. OPTICS EXPRESS, 2004, 12 (11): : 2404 - 2422