Numerical analysis of a Neumann boundary control problem with a stochastic parabolic equation

被引:0
|
作者
Qin Zhou [1 ,2 ]
Binjie Li [1 ]
机构
[1] School of Mathematics, Sichuan University
[2] School of Mathematics & Information, China West Normal University
基金
中国国家自然科学基金; 中央高校基本科研业务费专项资金资助;
关键词
D O I
暂无
中图分类号
O211.6 [随机过程];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We analyze the discretization of a Neumann boundary control problem with a stochastic parabolic equation, where additive noise occurs in the Neumann boundary condition. The convergence is established for general filtration, and the convergence rate O(τ1/4-?+ h1/2-?) is derived for the natural filtration of the Q-Wiener process.
引用
收藏
页码:2133 / 2156
页数:24
相关论文
共 50 条
  • [1] Numerical analysis of a Neumann boundary control problem with a stochastic parabolic equation
    Qin Zhou
    Binjie Li
    [J]. Science China Mathematics, 2023, 66 : 2133 - 2156
  • [2] Numerical analysis of a Neumann boundary control problem with a stochastic parabolic equation
    Zhou, Qin
    Li, Binjie
    [J]. SCIENCE CHINA-MATHEMATICS, 2023, 66 (09) : 2133 - 2156
  • [3] NUMERICAL SOLUTION FOR STOCHASTIC HEAT EQUATION WITH NEUMANN BOUNDARY CONDITIONS
    Balachandar, S. Raja
    Uma, D.
    Jafari, H.
    Venkatesh, S. G.
    [J]. THERMAL SCIENCE, 2023, 27 (Special Issue 1): : S57 - S66
  • [4] Inverse Problem for Source Function in Parabolic Equation at Neumann Boundary Conditions
    Andreev, Victor K.
    Stepanova, Irina, V
    [J]. JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2021, 14 (04): : 445 - 451
  • [5] A Boundary Control Problem for a Nonlinear Parabolic Equation
    V. I. Maksimov
    [J]. Differential Equations, 2003, 39 : 1626 - 1632
  • [6] A boundary control problem for a nonlinear parabolic equation
    Maksimov, VI
    [J]. DIFFERENTIAL EQUATIONS, 2003, 39 (11) : 1626 - 1632
  • [7] The Numerical Solution of the Boundary Inverse Problem for a Parabolic Equation
    Vasil'ev, V. V.
    Vasilyeva, M. V.
    Kardashevsky, A. M.
    [J]. APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS'16), 2016, 1773
  • [8] On a boundary control problem for a pseudo-parabolic equation
    Dekhkonov, Farrukh
    [J]. COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2023, 15 (02): : 289 - 299
  • [9] On a Neumann boundary control in a parabolic system
    Sener, Sule S.
    Subasi, Murat
    [J]. BOUNDARY VALUE PROBLEMS, 2015,
  • [10] On a Neumann boundary control in a parabolic system
    Şule S Şener
    Murat Subaşi
    [J]. Boundary Value Problems, 2015