On the Adomian Decomposition Method for Solving PDEs

被引:0
|
作者
Zhu Song-ping [1 ,2 ]
Lee Jonu [2 ]
机构
[1] School of Mathematics, Jilin University
[2] School of Mathematics and Applied Statistics, University of Wollongong
关键词
Adomian decomposition method; non-smooth initial condition; linear PDEs;
D O I
10.13447/j.1674-5647.2016.02.08
中图分类号
O175.2 [偏微分方程];
学科分类号
070104 ;
摘要
In this paper, we explore some issues related to adopting the Adomian decomposition method(ADM) to solve partial differential equations(PDEs), particularly linear diffusion equations. Through a proposition, we show that extending the ADM from ODEs to PDEs poses some strong requirements on the initial and boundary conditions, which quite often are violated for problems encountered in engineering, physics and applied mathematics. We then propose a modified approach,based on combining the ADM with the Fourier series decomposition, to provide solutions for those problems when these conditions are not met. In passing, we shall also present an argument that would address a long-term standing "pitfall" of the original ADM and make this powerful approach much more rigorous in its setup. Numerical examples are provided to show that our modified approach can be used to solve any linear diffusion equation(homogeneous or non-homogeneous), with reasonable smoothness of the initial and boundary data.
引用
收藏
页码:151 / 166
页数:16
相关论文
共 50 条
  • [1] On the Adomian decomposition method for solving the Stefan problem
    Bougoffa, Lazhar
    Rach, Randolph
    Wazwaz, Abdul-Majid
    Duan, Jun-Sheng
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2015, 25 (04) : 912 - 928
  • [2] Adomian decomposition method for first order PDEs with unprescribed data
    Lu, Tzon-Tzer
    Zheng, Wei-Quan
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (02) : 2563 - 2572
  • [3] Solving Heat Equation by the Adomian Decomposition Method
    Cheniguel, A.
    Ayadi, A.
    [J]. WORLD CONGRESS ON ENGINEERING, WCE 2011, VOL I, 2011, : 288 - 290
  • [4] The Adomian decomposition method for solving delay differential equation
    Evans, DJ
    Raslan, KR
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2005, 82 (01) : 49 - 54
  • [5] The tanh method and Adomian decomposition method for solving the foam drainage equation
    Helal, M. A.
    Mehanna, M. S.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (01) : 599 - 609
  • [6] The use of Adomian decomposition method for solving problems in calculus of variations
    Dehghan, Mehdi
    Tatari, Mehdi
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2006, 2006
  • [7] Revised Adomian decomposition method for solving a system of nonlinear equations
    Jafari, Hossein
    Daftardar-Gejji, Varsha
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 175 (01) : 1 - 7
  • [8] Solving protoplanetary structure equations using Adomian decomposition method
    Paul, Gour Chandra
    Khatun, Shahinur
    Nuruzzaman, Md
    Kumar, Dipankar
    Ali, Md Emran
    Bilkis, Farjana
    Barman, Mrinal Chandra
    [J]. HELIYON, 2021, 7 (10)
  • [9] Application of Adomian Decomposition Method for Solving Impulsive Differential Equations
    Hossainzadeh, H.
    Afrouzi, G. A.
    Yazdani, A.
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2011, 2 (04): : 672 - 681
  • [10] AN ADOMIAN DECOMPOSITION METHOD FOR SOLVING LIENARD EQUATIONS IN GENERAL FORM
    Ahmadabadi, M. Nili
    Ghaini, F. M. Maalek
    [J]. ANZIAM JOURNAL, 2009, 51 (02): : 302 - 308