Anisotropic singular integrals in product spaces

被引:0
|
作者
BOWNIK Marcin [1 ]
机构
[1] Department of Mathematics, University of Oregon
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
expansive dilation; Muckenhoupt weight; product space; Hardy space; bump function; singular integral;
D O I
暂无
中图分类号
O172.2 [积分学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the authors introduce a class of product anisotropic singular integral operators, whose kernels are adapted to the action of a pair A := (A1, A2) of expansive dilations on R n and R m , respectively. This class is a generalization of product singular integrals with convolution kernels introduced in the isotropic setting by Fefferman and Stein. The authors establish the boundedness of these operators in weighted Lebesgue and Hardy spaces with weights in product A∞ Muckenhoupt weights on R n × R m . These results are new even in the unweighted setting for product anisotropic Hardy spaces.
引用
收藏
页码:3163 / 3178
页数:16
相关论文
共 50 条
  • [1] Anisotropic singular integrals in product spaces
    BaoDe Li
    Marcin Bownik
    DaChun Yang
    Yuan Zhou
    Science China Mathematics, 2010, 53 : 3163 - 3178
  • [2] Anisotropic singular integrals in product spaces
    Li BaoDe
    Bownik, Marcin
    Yang DaChun
    Zhou Yuan
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (12) : 3163 - 3178
  • [3] SINGULAR-INTEGRALS ON PRODUCT-SPACES
    FEFFERMAN, R
    STEIN, EM
    ADVANCES IN MATHEMATICS, 1982, 45 (02) : 117 - 143
  • [4] SINGULAR INTEGRALS WITH MIXED HOMOGENEITY IN PRODUCT SPACES
    Chen, Larry
    Hung Viet Le
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2011, 14 (01): : 155 - 172
  • [5] Singular integrals on product spaces related to the Carleson operator
    Prestini, E
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2006, 58 (01): : 154 - 179
  • [6] Genuinely multilinear weighted estimates for singular integrals in product spaces
    Li, Kangwei
    Martikainen, Henri
    Vuorinen, Emil
    ADVANCES IN MATHEMATICS, 2021, 393
  • [7] SINGULAR INTEGRALS ON CARLESON MEASURE SPACES CMOp ON PRODUCT SPACES OF HOMOGENEOUS TYPE
    Li, Ji
    Ward, Lesley A.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (08) : 2767 - 2782
  • [8] SINGULAR INTEGRALS RELATED TO HOMOGENEOUS MAPPING WITH ROUGH KERNELS ON PRODUCT SPACES
    Al-Qassem, H.
    Ali, M.
    TAMKANG JOURNAL OF MATHEMATICS, 2008, 39 (02): : 165 - 176
  • [9] SINGULAR-INTEGRALS ON PRODUCT-SPACES WITH VARIABLE-COEFFICIENTS
    PRESTINI, E
    ARKIV FOR MATEMATIK, 1987, 25 (02): : 275 - 287
  • [10] Singular integrals with product kernels associated with mixed homogeneities and Hardy spaces
    Han, Yongsheng
    Krantz, Steven G.
    Tan, Chaoqiang
    ILLINOIS JOURNAL OF MATHEMATICS, 2024, 68 (02) : 365 - 397