NONLINEAR GALERKIN METHOD AND CRANK-NICOLSONMETHOD FOR VISCOUS INCOMPRESSIBLE FLOW

被引:0
|
作者
Yin-nian He
Dong-sheng Li
Kai-Tai Li(College of Science
机构
关键词
Nonlinear Galerkin method; Crank-Nicolson method; Viscous incompressible flow;
D O I
暂无
中图分类号
O241 [数值分析];
学科分类号
070102 ;
摘要
In this article we discuss a new full discrete scheme for the numerical solution of the Navier-Stokes equations modeling viscous incompressible flow. Thisscheme consists of nonlinear Galerkin method using mixed finite elements andCrank-Nicolson method. Next, we provide the second-order convergence accuracy of numerical solution corresponding to this scheme. Compared with the usualGalerkin scheme, this scheme can save a large amount of computational time underthe same convergence accuracy.
引用
收藏
页码:139 / 158
页数:20
相关论文
共 50 条
  • [1] Nonlinear Galerkin method and Crank-Nicolson method for viscous incompressible flow
    He, YN
    Li, DS
    Li, KT
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 1999, 17 (02) : 139 - 158
  • [2] A TAYLOR-GALERKIN-BASED ALGORITHM FOR VISCOUS INCOMPRESSIBLE-FLOW
    HAWKEN, DM
    TAMADDONJAHROMI, HR
    TOWNSEND, P
    WEBSTER, MF
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1990, 10 (03) : 327 - 351
  • [3] A nonlinear, subgridscale model for incompressible viscous flow problems
    Layton, WJ
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (02): : 347 - 357
  • [4] r-modified Crank-Nicholson difference schemes for one dimensional nonlinear viscous Burgers' equation for an incompressible flow
    Ashyralyev, Allaberen
    Gambo, Yusuf Ya'u
    [J]. INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2016), 2016, 1759
  • [5] The weak Galerkin method for solving the incompressible Brinkman flow
    Wang, Xiuli
    Zhai, Qilong
    Zhang, Ran
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 307 : 13 - 24
  • [6] The weak Galerkin finite element method for incompressible flow
    Zhang, Tie
    Lin, Tao
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 464 (01) : 247 - 265
  • [7] Convergence of a stabilized discontinuous Galerkin method for incompressible nonlinear elasticity
    Davide Baroli
    Alfio Quarteroni
    Ricardo Ruiz-Baier
    [J]. Advances in Computational Mathematics, 2013, 39 : 425 - 443
  • [8] Convergence of a stabilized discontinuous Galerkin method for incompressible nonlinear elasticity
    Baroli, Davide
    Quarteroni, Alfio
    Ruiz-Baier, Ricardo
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2013, 39 (02) : 425 - 443
  • [9] ON THE FAEDO-GALERKIN METHOD FOR A FREE BOUNDARY PROBLEM FOR INCOMPRESSIBLE VISCOUS MAGNETOHYDRODYNAMICS
    Kacprzyk, Piotr
    Zajaczkowski, Wojciech M.
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2018, 52 (01) : 69 - 98
  • [10] A DOMAIN DECOMPOSITION METHOD FOR INCOMPRESSIBLE VISCOUS-FLOW
    STRIKWERDA, JC
    SCARBNICK, CD
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (01): : 49 - 67