Magnetic susceptibility inversion method with full tensor gradient data using low-temperature SQUIDs

被引:0
|
作者
Yan-Fei Wang [1 ,2 ,3 ]
Liang-Liang Rong [2 ,4 ]
Long-Qing Qiu [2 ,4 ]
D.V.Lukyanenko [5 ]
A.G.Yagola [5 ]
机构
[1] Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences
[2] University of the Chinese Academy of Sciences
[3] Institutions of Earth Science, Chinese Academy of Sciences
[4] Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
[5] Physical Faculty, Lomonosov Moscow State University
基金
中国国家自然科学基金; 俄罗斯基础研究基金会;
关键词
Full tensor magnetic gradient; Susceptibility; Sparse regularization;
D O I
暂无
中图分类号
P631.2 [磁法勘探];
学科分类号
0818 ; 081801 ; 081802 ;
摘要
Full tensor magnetic gradient measurements are available nowadays. These are essential for determining magnetization parameters in deep layers. Using full or partial tensor magnetic gradient measurements to determine the subsurface properties, e.g., magnetic susceptibility, is an inverse problem. Inversion using total magnetic intensity data is a traditional way.Because of di culty in obtaining the practical full tensor magnetic gradient data, the corresponding inversion results are not so widely reported. With the development of superconducting quantum interference devices(SQUIDs), we can acquire the full tensor magnetic gradient data through field measurements. In this paper, we study the inverse problem of retrieving magnetic susceptibility with the field data using our designed low-temperature SQUIDs. The solving methodology based on sparse regularization and an alternating directions method of multipliers is established. Numerical and field data experiments are performed to show the feasibility of our algorithm.
引用
收藏
页码:794 / 807
页数:14
相关论文
共 50 条
  • [1] Magnetic susceptibility inversion method with full tensor gradient data using low-temperature SQUIDs
    Wang, Yan-Fei
    Rong, Liang-Liang
    Qiu, Long-Qing
    Lukyanenko, D. V.
    Yagola, A. G.
    [J]. PETROLEUM SCIENCE, 2019, 16 (04) : 794 - 807
  • [2] Magnetic susceptibility inversion method with full tensor gradient data using low-temperature SQUIDs
    YanFei Wang
    LiangLiang Rong
    LongQing Qiu
    DVLukyanenko
    AGYagola
    [J]. Petroleum Science., 2019, 16 (04) - 807
  • [3] MAGNETIC PARAMETERS INVERSION METHOD WITH FULL TENSOR GRADIENT DATA
    Wang, Yanfei
    Lukyanenko, Dmitry
    Yagola, Anatoly
    [J]. INVERSE PROBLEMS AND IMAGING, 2019, 13 (04) : 745 - 754
  • [4] Regularizing inversion of susceptibility with projection onto convex set using full tensor magnetic gradient data
    Ji, Shuangxi
    Wang, Yanfei
    Zou, Anqi
    [J]. INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2017, 25 (02) : 202 - 217
  • [5] Three-dimensional inversion of full magnetic gradient tensor data based on hybrid regularization method
    Ji, Shuangxi
    Zhang, Huai
    Wang, Yanfei
    Rong, Liangliang
    Shi, Yaolin
    Chen, Yongshun
    [J]. GEOPHYSICAL PROSPECTING, 2019, 67 (01) : 226 - 261
  • [6] Reconstruction of Magnetic Susceptibility Using Full Magnetic Gradient Data
    Wang, Y.
    Kolotov, I. I.
    Lukyanenko, D. V.
    Yagola, A. G.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2020, 60 (06) : 1000 - 1007
  • [7] Reconstruction of Magnetic Susceptibility Using Full Magnetic Gradient Data
    Y. Wang
    I. I. Kolotov
    D. V. Lukyanenko
    A. G. Yagola
    [J]. Computational Mathematics and Mathematical Physics, 2020, 60 : 1000 - 1007
  • [8] Large Airborne Full Tensor Gradient Data Inversion Based on a Non-Monotone Gradient Method
    Yong Sun
    Zhaohai Meng
    Fengting Li
    [J]. Pure and Applied Geophysics, 2018, 175 : 1065 - 1084
  • [9] Large Airborne Full Tensor Gradient Data Inversion Based on a Non-Monotone Gradient Method
    Sun, Yong
    Meng, Zhaohai
    Li, Fengting
    [J]. PURE AND APPLIED GEOPHYSICS, 2018, 175 (03) : 1065 - 1084
  • [10] LOW-TEMPERATURE NOISE OF THE MAGNETIC-FLUX IN HTSC SQUIDS
    SHNYRKOV, VI
    TIMOFEEV, VP
    TSOY, GM
    KHLUS, VA
    DEMIN, AV
    [J]. FIZIKA NIZKIKH TEMPERATUR, 1995, 21 (06): : 604 - 612