电力系统设备状态监测的概念及现状

被引:215
|
作者
陈维荣
宋永华
孙锦鑫
机构
[1] 布鲁内尔(Brunel)大学!英国西南交通大学电气化自动化所!四川省成都市610031
[2] 博世杰电力技术研究所!北京100085
关键词
状态监测; 预测维护; 趋势预测; 故障诊断;
D O I
10.13335/j.1000-3673.pst.2000.11.003
中图分类号
TM76 [电力系统的自动化];
学科分类号
080802 ;
摘要
面对降低运行成本、提高发送电设备的利用率以及改善电力质量和用户服务的挑战 ,迫切需要采用电力系统状态监测技术。状态监测可使维护只在需要时才安排 ,使停电时间最短 ,降低成本 ,延长设备的使用寿命。介绍了电力系统状态监测的概念、作用和一般方法 ,阐述了电力系统状态监测的研究现状和发展趋势 ,并指出状态监测将发展成为电力系统中的一个重要的新兴研究领域
引用
收藏
页码:12 / 17
页数:6
相关论文
共 17 条
  • [1] Partial discharge plant -monitoring technology: present and future developments. Kemp I. IEE Proceedings Science Measurement and Technology . 1995
  • [2] Review of chemical indicators of degradation of cellulosic electrical paper insulation in oil -filled transformer. Emsley A,Stevens G. IEE Proceedings Science Measurement and Technology . 1994
  • [3] Artificial neural network based fault diagnostic of rotating machinery using wavelet transforms as a preprocessor. Paya B,et al. Journal of Mechanical Systems . 1997
  • [4] Feasibility of using unsupervised learning,artificial neural networks for the condition monitoring of electrical machines. Penman J,Yin C. IEE Proceddings on Electric Power Applications . 1994
  • [5] The determination of FFA concentration in transfomer oil by fluorescence measurements. Blue R,Uttamchandani D. IEEE Transactions on Dielectrics and Electrical Insulation . 1998
  • [6] Gas-turbine condition monitoring using qualitative model -based diagnosis. Trave-Massuyes L,Milne R. IEEE Expert . 1997
  • [7] Methods of condition monitoring and fault diagnosis for induction motors. Thorsen O,Dalva M. European Transactions on Telecommunications . 1998
  • [8] A study of the natural vibratory response of stator structures to improve condition monitoring strategies for induction motors. Lucas M,Thomson W. Proc of The Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science . 1998
  • [9] Wavelet analysis for gas turbine fault diagnostics. Aretakis N,Mathioudakis K. Transactions of ASME Journal of Engineering for Gas Turbines and Power . 1997
  • [10] Insulation failure prediction in AC machines using line-neural voltages. Cash M,et al. IEEE Transactions on Industry Applications . 1998