On the Spectral Radius of Trees with the Given Diameter d

被引:1
|
作者
TAN Shang-wang
机构
关键词
tree; spectral radius; diameter; star; path;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
Let T denote a tree with the diameter d(d≥2) and order n. Let Pd,r,n-d-1 denote the tree obtained by identifying the rth vertex of path Pd+1 and the center of star K1,n-d-1, where r = r(d) is the integer part about d+2/2. Then p(T) ≤p(Pd,r,n-d-1),and equality holds if and only if T≌ Pd,r,n-d-1
引用
收藏
页码:57 / 62
页数:6
相关论文
共 50 条
  • [1] The minimal Laplacian spectral radius of trees with a given diameter
    Liu, Ruifang
    Lu, Zhonghua
    Shu, Jinlong
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (01) : 78 - 83
  • [2] On the Maximum Spectral Radius of (m,n)-trees with Given Diameter
    CHENG Wei
    Department of Mathematics
    数学季刊, 2006, (01) : 129 - 137
  • [3] Eccentricity spectral radius of t-clique trees with given diameter
    Qiu, Zhengping
    Tang, Zikai
    Li, Qiyue
    DISCRETE APPLIED MATHEMATICS, 2023, 337 : 202 - 217
  • [4] THE MINIMUM ε-SPECTRAL RADIUS OF t-CLIQUE TREES WITH GIVEN DIAMETER
    Qiu, Zhengping
    Deng, Hanyuan
    Tang, Zikai
    TRANSACTIONS ON COMBINATORICS, 2024, 13 (03) : 235 - 255
  • [5] Spectral radius of graphs with given diameter
    Feng, Lihua
    ARS COMBINATORIA, 2011, 98 : 303 - 308
  • [6] On the spectral radius of trees with fixed diameter
    Guo, JM
    Shao, JY
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 413 (01) : 131 - 147
  • [7] Graphs with given diameter maximizing the spectral radius
    van Dam, E. R.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (2-3) : 454 - 457
  • [8] Distance spectral radius of a tree with given diameter
    Yu, Guanglong
    Guo, Shuguang
    Zhai, Mingqing
    ARS COMBINATORIA, 2017, 134 : 351 - 362
  • [9] On the distance spectral radius of digraphs with given diameter
    Xi, Weige
    So, Wasin
    Wang, Ligong
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (14): : 2547 - 2557
  • [10] The minimal spectral radius of graphs with a given diameter
    van Dam, E. R.
    Kooij, R. E.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 423 (2-3) : 408 - 419