Stabilization of nanoscale zero-valent iron in water with mesoporous carbon(n ZVI@MC)

被引:4
|
作者
Junming Shi [1 ]
Jing Wang [1 ]
Wei Wang [2 ]
Wei Teng [1 ]
Wei-xian Zhang [1 ]
机构
[1] State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University
[2] School of Chemical Science and Engineering, Tongji University
基金
中国国家自然科学基金; 中央高校基本科研业务费专项资金资助;
关键词
Mesoporous carbon; Nanoscale zero-valent iron; Mobility; Porous media; Heavy metal removal;
D O I
暂无
中图分类号
X13 [环境化学];
学科分类号
083001 ;
摘要
Two challenges persist in the applications of nanoscale zero-valent iron(nZVI) for environmental remediation and waste treatment: limited mobility due to rapid aggregation and short lifespan in water due to quick oxidation. Herein, we report the nZVI incorporated into mesoporous carbon(MC) to enhance stability in aqueous solution and mobility in porous media. Meanwhile, the reactivity of nZVI is preserved thanks to high temperature treatment and confinement of carbon framework. Small-sized(~16 nm) nZVI nanoparticles are uniformly dispersed in the whole carbon frameworks. Importantly, the nanoparticles are partially trapped across the carbon walls with a portion exposed to the mesopore channels. This unique structure not only is conductive to hold the nZVI tightly to avoid aggregation during mobility but also provides accessible active sites for reactivity. This new type of nanomaterial contains ~10 wt% of iron. The nZVI@MC possesses a high surface area(~ 500 m~2/g) and uniform mesopores(~ 4.2 nm) for efficient pollutant diffusion and reactions. Also, high porosity of nZVI@MC contributes to the stability and mobility of nZVI. Laboratory column experiments further demonstrate that nZVI@MC suspension(~4 g Fe/L) can pass through sand columns much more efficiently than bare nZVI while the high reactivity of nZVI@MC is confirmed from reactions with Ni(II). It exhibits remarkably better performance in nickel(20 mg/L) extraction than mesoporous carbon, with 88.0% and 33.0%uptake in 5 min, respectively.
引用
收藏
页码:28 / 33
页数:6
相关论文
共 50 条
  • [1] Stabilization of nanoscale zero-valent iron in water with mesoporous carbon (nZVI@MC)
    Shi, Junming
    Wang, Jing
    Wang, Wei
    Teng, Wei
    Zhang, Wei-xian
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2019, 81 : 28 - 33
  • [2] Applications of Zero-Valent Iron (ZVI) and Nanoscale ZVI to Municipal and Decentralized Drinking Water Systems A Review
    Chiu, Pei C.
    NOVEL SOLUTIONS TO WATER POLLUTION, 2013, 1123 : 237 - 249
  • [4] Stabilization of biosolids with nanoscale zero-valent iron (nZVI)
    Li, Xiao-qin
    Brown, Derick G.
    Zhang, Wei-xian
    JOURNAL OF NANOPARTICLE RESEARCH, 2007, 9 (02) : 233 - 243
  • [5] Stabilization of biosolids with nanoscale zero-valent iron (nZVI)
    Xiao-qin Li
    Derick G. Brown
    Wei-xian Zhang
    Journal of Nanoparticle Research, 2007, 9 : 233 - 243
  • [6] Mystery of Ageing of "Zero-Valent Iron" (ZVI)
    Wouafo, Marquise Touomo
    Dazie, Joel Donkeng
    Tchatchueng, Jean Bosco
    Noubactep, Chicgoua
    Ludvik, Jiri
    XXXVII MODERNI ELEKTROCHEMICKE METODY, 2017, : 261 - 265
  • [7] Implementation of zero-valent iron (ZVI) into drinking water supply - Role of the ZVI and biological processes
    Kowalski, Krzysztof P.
    Sogaard, Erik G.
    CHEMOSPHERE, 2014, 117 : 108 - 114
  • [8] Kinetics of RDX degradation by zero-valent iron (ZVI)
    Wanaratna, Pischa
    Christodoulatos, Christos
    Sidhoum, Mohammed
    JOURNAL OF HAZARDOUS MATERIALS, 2006, 136 (01) : 68 - 74
  • [9] Synthesis of nanoscale zero-valent iron/ordered mesoporous carbon for adsorption and synergistic reduction of nitrobenzene
    Ling, Xiaofeng
    Li, Jiansheng
    Zhu, Wen
    Zhu, Yaoyao
    Sun, Xiuyun
    Shen, Jinyou
    Han, Weiqing
    Wang, Lianjun
    CHEMOSPHERE, 2012, 87 (06) : 655 - 660
  • [10] Zero-valent iron (ZVI) activation of persulfate (PS) for oxidation of bentazon in water
    Wei, Xingya
    Gao, Naiyun
    Li, Changjun
    Deng, Yang
    Zhou, Shiqing
    Li, Lei
    CHEMICAL ENGINEERING JOURNAL, 2016, 285 : 660 - 670