Self-adjoint Extensions for the Neumann Laplacian and Applications

被引:0
|
作者
S.A.NAZAROV [1 ]
J.SOKOLOWSKI [2 ]
机构
[1] Institute of Mechanical Engineering Problems V.O.Bolshoy pr.61,199178 St Petersburg Russia
[2] Institut Elie Cartan Laboratoire de Mathématiques Université Henri Poincaré NancyI B.P.239 54506 Vandoeuvrelès Nancy Cedex France and Systems Research Institute of the Polish Academy of Sciences ul.Newelska601-447Warszawa Poland
关键词
shape optimization; asymptotic expansions; self-adjoint extension; weighted spaces with detached asymptotics; topological derivatives;
D O I
暂无
中图分类号
O175.8 [边值问题];
学科分类号
070104 ;
摘要
A new technique is proposed for the analysis of shape optimization problems.The techniqueuses the asymptotic analysis of boundary value problems in singularly perturbed geometrical domains.The asymptotics of solutions are derived in the framework of compound and matched asymptoticsexpansions.The analysis involves the so-called interior topology variations.The asymptotic expansionsare derived for a model problem,however the technique applies to general elliptic boundary valueproblems.The self-adjoint extensions of elliptic operators and the weighted spaces with detachedasymptotics are exploited for the modelling of problems with small defects in geometrical domains.The error estimates for proposed approximations of shape functionals are provided.
引用
收藏
页码:879 / 906
页数:28
相关论文
共 50 条
  • [1] Self-adjoint extensions for the Neumann Laplacian and applications
    Nazarov, S. A.
    Sokolowski, J.
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (03) : 879 - 906
  • [2] Self–adjoint Extensions for the Neumann Laplacian and Applications
    S. A. Nazarov
    J. Sokołowski
    [J]. Acta Mathematica Sinica, 2006, 22 : 879 - 906
  • [3] Feynman formulas generated by self-adjoint extensions of the Laplacian
    O. G. Smolyanov
    H. von Weizsäcker
    [J]. Doklady Mathematics, 2009, 79 : 335 - 338
  • [4] Feynman formulas generated by self-adjoint extensions of the Laplacian
    Smolyanov, O. G.
    von Weizsaecker, H.
    [J]. DOKLADY MATHEMATICS, 2009, 79 (03) : 335 - 338
  • [5] A note on self-adjoint extensions of the Laplacian on weighted graphs
    Huang, Xueping
    Keller, Matthias
    Masamune, Jun
    Wojciechowski, Radoslaw K.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (08) : 1556 - 1578
  • [6] On Z-Invariant Self-Adjoint Extensions of the Laplacian on Quantum Circuits
    Balmaseda, Aitor
    Di Cosmo, Fabio
    Manuel Perez-Pardo, Juan
    [J]. SYMMETRY-BASEL, 2019, 11 (08):
  • [7] SELF-ADJOINT EXTENSIONS OF RESTRICTIONS
    Posilicano, Andrea
    [J]. OPERATORS AND MATRICES, 2008, 2 (04): : 483 - 506
  • [8] Spectra of self-adjoint extensions and applications to solvable schrodinger operators
    Bruening, Jochen
    Geyler, Vladimir
    Pankrashkin, Konstantin
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2008, 20 (01) : 1 - 70
  • [9] All self-adjoint extensions of the magnetic Laplacian in nonsmooth domains and gauge transformations
    De Oliveira, Cesar Rogerio
    Monteiro, Wagner
    [J]. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2021, 22 (04) : 1805 - 1841
  • [10] PERTURBATIONS OF SELF-ADJOINT OPERATORS WITH POINT SPECTRA BY RESTRICTIONS AND SELF-ADJOINT EXTENSIONS
    SCHMUDGEN, K
    [J]. MATHEMATISCHE ANNALEN, 1981, 256 (02) : 233 - 248