Primal-dual Interior-point Algorithms for Second-order Cone Optimization Based on a New Parametric Kernel Function

被引:0
|
作者
Yan Qin BAI Department of Mathematics
机构
关键词
second-order cone optimization; linear optimization; interior-point methods; large-and small-update methods; polynomial-time complexity;
D O I
暂无
中图分类号
O174.14 [多项式理论]; O224 [最优化的数学理论];
学科分类号
070104 ; 070105 ; 1201 ;
摘要
A class of polynomial primal-dual interior-point algorithms for second-order cone opti-mization based on a new parametric kernel function,with parameters p and q,is presented.Its growthterm is between linear and quadratic.Some new tools for the analysis of the algorithms are proposed.The complexity bounds of O(NlogN log N/ε) for large-update methods and O(Nlog N/ε) for small-update methods match the best known complexity bounds obtained for these methods.Numerical testsdemonstrate the behavior of the algorithms for different results of the parameters p and q.
引用
收藏
页码:2027 / 2042
页数:16
相关论文
共 50 条
  • [1] Primal-dual interior-point algorithms for second-order cone optimization based on a new parametric kernel function
    Yan Qin Bai
    Guo Qiang Wang
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (11) : 2027 - 2042
  • [2] Primal-dual Interior-point Algorithms for Second-order Cone Optimization Based on a New Parametric Kernel Function
    Yan Qin Bai
    Guo Qiang Wang
    [J]. Acta Mathematica Sinica, English Series, 2007, 23 : 2027 - 2042
  • [3] Primal-dual interior-point algorithms for second-order cone optimization based on kernel functions
    Bai, Y. Q.
    Wang, G. Q.
    Roos, C.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (10) : 3584 - 3602
  • [4] A large-update primal-dual interior-point algorithm for second-order cone optimization based on a new proximity function
    Fathi-Hafshejani, S.
    Mansouri, H.
    Peyghami, M. Reza
    [J]. OPTIMIZATION, 2016, 65 (07) : 1477 - 1496
  • [5] ANALYSIS OF COMPLEXITY OF PRIMAL-DUAL INTERIOR-POINT ALGORITHMS BASED ON A NEW KERNEL FUNCTION FOR LINEAR OPTIMIZATION
    Li, Siqi
    Qian, Weiyi
    [J]. NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2015, 5 (01): : 37 - 46
  • [6] A Primal-Dual Interior-Point Algorithm for Convex Quadratic Optimization Based on A Parametric Kernel Function
    Wang, Guoqiang
    Bai, Yanqin
    [J]. INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION, VOL 2, PROCEEDINGS, 2009, : 748 - +
  • [7] A PRIMAL-DUAL INTERIOR-POINT ALGORITHM BASED ON A NEW KERNEL FUNCTION
    Cho, G. M.
    Cho, Y. Y.
    Lee, Y. H.
    [J]. ANZIAM JOURNAL, 2010, 51 (04): : 476 - 491
  • [8] Primal-dual interior-point algorithm based on a new kernel function for linear optimization
    Qian, Zhonggen
    Wang, Guoqiang
    Bai, Yanqin
    [J]. PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON INFORMATION AND MANAGEMENT SCIENCES, 2007, 6 : 464 - 470
  • [9] IPRSOCP: A Primal-Dual Interior-Point Relaxation Algorithm for Second-Order Cone Programming
    Zhang, Rui-Jin
    Wang, Zhao-Wei
    Liu, Xin-Wei
    Dai, Yu-Hong
    [J]. JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2024,
  • [10] A new primal-dual interior-point method for semidefinite optimization based on a parameterized kernel function
    Mengmeng Li
    Mingwang Zhang
    Kun Huang
    Zhengwei Huang
    [J]. Optimization and Engineering, 2021, 22 : 293 - 319