Deformation behavior of in situ permafrost on the Qinghai-Tibetan Plateau

被引:1
|
作者
Hu Zhang [1 ]
Jian Ming Zhang [1 ]
Zhi Long Zhang [1 ]
Ming Tang Chai [1 ]
机构
[1] State Key Laboratory of Frozen Soils Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences
基金
中国国家自然科学基金;
关键词
creep behavior; in situ permafrost; Qinghai-Tibetan Plateau; seasonal deformation;
D O I
暂无
中图分类号
P642.14 [冻土学];
学科分类号
070501 ;
摘要
Creep is an important mechanical behavior of frozen soils, one which can cause many problems for the infrastructures in permafrost regions on the Qinghai-Tibetan Plateau. To access the natural creep properties of in situ permafrost for explaining the engineering instability and predicting long-term deformation, conducting field tests is necessary. The paper reports on a group of plate loading tests we carried out over many years on the Qinghai-Tibetan Plateau. The results show that the ground temperature at the loading plates ranged from-0.29 °C to-3.03 °C, and the mean annual ground temperature increased year by year in a linear fashion. Affected by the ground-temperature variations, two forms of deformation curves, a step-form and a wave-form occurred, depending on the relative extent of settlement in warm seasons and frost heave in cold seasons. Overall, the deformations of permafrost were characterized by settlement. The deformation magnitudes and curve styles of permafrost are different at different locations attributing to the influence of ground temperature and moisture content. Due to the existence of much unfrozen water in warm frozen soils, consolidation resulting from migration of unfrozen water along seepage channels may play a significant role in the settlement of permafrost. The research can provide a credible reference for engineering in the permafrost regions and the numerical computation of settlement.
引用
下载
收藏
页码:112 / 119
页数:8
相关论文
共 50 条
  • [1] Recent permafrost warming on the Qinghai-Tibetan plateau
    Wu, Qingbai
    Zhang, Tingjun
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D13)
  • [2] Effects of desertification on permafrost environment in Qinghai-Tibetan Plateau
    Chen, Lin
    Yu, Wenbing
    Han, Fenglei
    Lu, Yan
    Zhang, Tianqi
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2020, 262
  • [3] Soil Enzyme Activities in Permafrost Regions of the Western Qinghai-Tibetan Plateau
    Wu, X. D.
    Zhao, L.
    Fang, H. B.
    Chen, J.
    Pang, Q. Q.
    Wang, Z. W.
    Chen, M. J.
    Ding, Y. J.
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2012, 76 (04) : 1280 - 1289
  • [4] Engineering Distresses along the Major Permafrost Engineering on the Qinghai-Tibetan Plateau
    Li, Guoyu
    Ma, Wei
    Chen, Dun
    Du, Qingsong
    COLD REGIONS ENGINEERING 2024: SUSTAINABLE AND RESILIENT ENGINEERING SOLUTIONS FOR CHANGING COLD REGIONS, 2024, : 60 - 66
  • [5] Permafrost degradation enhances the risk of mercury release on Qinghai-Tibetan Plateau
    Mu, Cuicui
    Schuster, Paul F.
    Abbott, Benjamin W.
    Kang, Shichang
    Guo, Junming
    Sun, Shiwei
    Wu, Qingbai
    Zhang, Tingjun
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 708
  • [6] Soil enzyme response to permafrost collapse in the Northern Qinghai-Tibetan Plateau
    Xu, Haiyan
    Liu, Guimin
    Wu, Xiaodong
    Smoak, Joseph M.
    Mu, Cuicui
    Ma, Xiaoliang
    Zhang, Xiaolan
    Li, Hongqin
    Hu, Guanglu
    ECOLOGICAL INDICATORS, 2018, 85 : 585 - 593
  • [7] The effect of climate warming and permafrost thaw on desertification in the Qinghai-Tibetan Plateau
    Xue, Xian
    Guo, Jian
    Han, Bangshuai
    Sun, Qingwei
    Liu, Lichao
    GEOMORPHOLOGY, 2009, 108 (3-4) : 182 - 190
  • [8] Desertification Caused by Embankment Construction in Permafrost Environment on the Qinghai-Tibetan Plateau
    Tianli Lan
    Xiaoxiao Luo
    Qinguo Ma
    Wangtao Jiang
    Huxi Xia
    Arabian Journal for Science and Engineering, 2023, 48 : 583 - 599
  • [9] Desertification Caused by Embankment Construction in Permafrost Environment on the Qinghai-Tibetan Plateau
    Lan, Tianli
    Luo, Xiaoxiao
    Ma, Qinguo
    Jiang, Wangtao
    Xia, Huxi
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2023, 48 (01) : 583 - 599
  • [10] Improved permafrost stability by revegetation in extremely degraded grassland of the Qinghai-Tibetan Plateau
    Jia, Yinglan
    Chen, Shengyun
    Wu, Minghui
    Gu, Yuzheng
    Wei, Peijie
    Wu, Tonghua
    Shang, Zhanhuan
    Wang, Shijin
    Yu, Hongyan
    GEODERMA, 2023, 430