The Cauchy problem for non-autonomous nonlinear Schrdinger equations

被引:0
|
作者
Peter Y. H. Pang
机构
[1] Department of Mathematics National University of Singapore
[2] Republic of Singapore
[3] 2 Science Drive 2
[4] Singapore 117543
关键词
non-autonomous Schrodinger equations; local existence; global existence;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In this paper we study the Cauchy problem for cubic nonlinear Schrodinger equation with space- and time-dependent coefficients on Rm and Tm. By an approximation argument we prove that for suitable initial values, the Cauchy problem admits unique local solutions. Global existence is discussed in the cases of m = 1,2.
引用
收藏
页码:522 / 538
页数:17
相关论文
共 50 条
  • [1] The Cauchy problem for non-autonomous nonlinear Schrdinger equations
    Peter Y. H. Pang
    [J]. ScienceinChina,Ser.A., 2005, Ser.A.2005 (04) - 538
  • [2] The Cauchy problem for non-autonomous nonlinear Schrödinger equations
    Peter Y. H. Pang
    Hongyan Tang
    Youde Wang
    [J]. Science in China Series A: Mathematics, 2005, 48 : 522 - 538
  • [3] The Cauchy problem for non-autonomous nonlinear Schrodinger equations
    Pang, PYH
    Tang, HY
    Wang, YD
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (04): : 522 - 538
  • [4] Normalized Solutions of Nonlinear Schrödinger Equations with Potentials and Non-autonomous Nonlinearities
    Zuo Yang
    Shijie Qi
    Wenming Zou
    [J]. The Journal of Geometric Analysis, 2022, 32
  • [5] Non-autonomous Cauchy problem for evolution equations
    Couchouron, JF
    [J]. POTENTIAL ANALYSIS, 2000, 13 (03) : 213 - 248
  • [6] Sharp weights in the Cauchy problem for nonlinear Schrödinger equations with potential
    Rémi Carles
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 2087 - 2094
  • [7] The Cauchy Problem of the Nonlinear Schrödinger Equations in ℝ1+1
    Gui-xiang Xu
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2007, 23 : 593 - 610
  • [8] Cauchy problem for fractional non-autonomous evolution equations
    Pengyu Chen
    Xuping Zhang
    Yongxiang Li
    [J]. Banach Journal of Mathematical Analysis, 2020, 14 : 559 - 584
  • [9] Cauchy problem for fractional non-autonomous evolution equations
    Chen, Pengyu
    Zhang, Xuping
    Li, Yongxiang
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 14 (02) : 559 - 584
  • [10] Cauchy problem for non-autonomous fractional evolution equations
    Jia Wei He
    Yong Zhou
    [J]. Fractional Calculus and Applied Analysis, 2022, 25 : 2241 - 2274