WEAK SOLUTIONS TO THE TWO-DIMENSIONAL DERIVATIVE GINZBURG-LANDAU EQUATION

被引:0
|
作者
郭伯灵
王碧祥
机构
关键词
Global weak solution; approximate solution; Galerkin method; Ginzburg-Landau equstion;
D O I
暂无
中图分类号
O241 [数值分析];
学科分类号
070102 ;
摘要
In this paper, we deal with the generalized derivative Ginzburg-Landau equation in two spatial dimensions, and obtain the existence of global weak solutions for this equation subject to periodic boundary conditions.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [1] Weak solutions to the two-dimensional derivative Ginzburg-Landau equation
    Guo Boling
    Wang Bixiang
    [J]. Acta Mathematicae Applicatae Sinica, 1999, 15 (1) : 1 - 8
  • [2] Spiral solutions of the two-dimensional complex Ginzburg-Landau equation
    Liu, SD
    Liu, SK
    Fu, ZT
    Zhao, Q
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2001, 35 (02) : 159 - 161
  • [3] Global existence theory for the two-dimensional derivative Ginzburg-Landau equation
    Cao, ZC
    Guo, BL
    Wang, BX
    [J]. CHINESE SCIENCE BULLETIN, 1998, 43 (05): : 393 - 395
  • [4] Global existence theory for the two-dimensional derivative Ginzburg-Landau equation
    CAO Zhenchao+1
    2. Institute of Applied Physics and Computational Mathematics
    [J]. Science Bulletin, 1998, (05) : 393 - 395
  • [5] Two-dimensional structures in the quintic Ginzburg-Landau equation
    Berard, Florent
    Vandamme, Charles-Julien
    Mancas, Stefan C.
    [J]. NONLINEAR DYNAMICS, 2015, 81 (03) : 1413 - 1433
  • [6] Evaporation of droplets in the two-dimensional Ginzburg-Landau equation
    Rougemont, J
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2000, 140 (3-4) : 267 - 282
  • [7] Asymptotics for the generalized two-dimensional Ginzburg-Landau equation
    Gao, HJ
    Lin, GG
    Duan, JQ
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 247 (01) : 198 - 216
  • [8] Aging phenomena in the two-dimensional complex Ginzburg-Landau equation
    Liu, Weigang
    Tauber, Uwe C.
    [J]. EPL, 2019, 128 (03)
  • [9] Stable vortex solitons in the two-dimensional Ginzburg-Landau equation
    Crasovan, LC
    Malomed, BA
    Mihalache, D
    [J]. PHYSICAL REVIEW E, 2001, 63 (01):
  • [10] Phase turbulence in the two-dimensional complex Ginzburg-Landau equation
    Manneville, P
    Chate, H
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1996, 96 (1-4) : 30 - 46