Best Proximity Point Theorems for p-Proximal α-η-β-Quasi Contractions in Metric Spaces with w0-Distance

被引:0
|
作者
Mengdi LIU [1 ]
Zhaoqi WU [1 ]
Chuanxi ZHU [1 ]
Chenggui YUAN [2 ]
机构
[1] Department of Mathematics, Nanchang University
[2] Department of Mathematics, Swansea University
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O177.91 [非线性泛函分析];
学科分类号
摘要
In this paper, we propose a new class of non-self mappings called p-proximal α-η-β-quasi contraction, and introduce the concepts of α-proximal admissible mapping with respect to η and(α, d) regular mapping with respect to η. Based on these new notions, we study the existence and uniqueness of best proximity point for this kind of new contractions in metric spaces with w-distance and obtain a new theorem, which generalize and complement the results in [Ayari, M. I. et al. Fixed Point Theory Appl., 2017, 2017: 16] and [Ayari, M. I. et al. Fixed Point Theory Appl., 2019, 2019: 7]. We give an example to show the validity of our main result.Moreover, we obtain several consequences concerning about best proximity point and common fixed point results for two mappings, and we present an application of a corollary to discuss the solutions to a class of systems of Volterra type integral equations.
引用
收藏
页码:95 / 110
页数:16
相关论文
共 50 条
  • [1] Best proximity point results for p-proximal contractions
    Altun, I.
    Aslantas, M.
    Sahin, H.
    ACTA MATHEMATICA HUNGARICA, 2020, 162 (02) : 393 - 402
  • [2] Best proximity point results for p-proximal contractions
    I. Altun
    M. Aslantas
    H. Sahin
    Acta Mathematica Hungarica, 2020, 162 : 393 - 402
  • [3] Best proximity results for p-proximal contractions on topological spaces
    Bera, A.
    Dey, L. K.
    Petrusel, A.
    Chanda, A.
    CARPATHIAN JOURNAL OF MATHEMATICS, 2023, 39 (03) : 621 - 632
  • [4] Best proximity point theorems for α-ψ-proximal contractions in intuitionistic fuzzy metric spaces
    Latif, Abdul
    Hezarjaribi, Masoomeh
    Salimi, Peyman
    Hussain, Nawab
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [5] Best proximity point theorems for α-ψ-proximal contractions in intuitionistic fuzzy metric spaces
    Abdul Latif
    Masoomeh Hezarjaribi
    Peyman Salimi
    Nawab Hussain
    Journal of Inequalities and Applications, 2014
  • [6] A NOTE ON THE PAPER "BEST PROXIMITY POINT RESULTS FOR p-PROXIMAL CONTRACTIONS"
    Gabeleh, M.
    Markin, J.
    ACTA MATHEMATICA HUNGARICA, 2021, 164 (01) : 326 - 329
  • [7] Comments on the paper “Best proximity point results for p-proximal contractions”
    S. Som
    Acta Mathematica Hungarica, 2022, 168 : 516 - 519
  • [8] COMMENTS ON THE PAPER "BEST PROXIMITY POINT RESULTS FOR P-PROXIMAL CONTRACTIONS"
    Som, S.
    ACTA MATHEMATICA HUNGARICA, 2022, 168 (02) : 516 - 519
  • [9] Certain Interpolative Proximal Contractions, Best Proximity Point Theorems in Bipolar Metric Spaces with Applications
    Jahangeer, Fahad
    Alshaikey, Salha
    Ishtiaq, Umar
    Lazar, Tania A.
    Lazar, Vasile L.
    Guran, Liliana
    FRACTAL AND FRACTIONAL, 2023, 7 (10)
  • [10] Coincidence best proximity point theorems for proximal Berinde g-cyclic contractions in metric spaces
    Klanarong, Chalongchai
    Chaiya, Inthira
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)