On the finite horizon Nash equilibrium solution in the differential game approach to formation control

被引:0
|
作者
JOND Hossein Barghi [1 ]
NABIYEV Vasif [1 ]
机构
[1] Department of Computer Engineering, Karadeniz Technical University
关键词
formation control; differential game; dynamic game; Nash equilibrium; coupled Riccati equations;
D O I
暂无
中图分类号
O225 [对策论(博弈论)]; O175 [微分方程、积分方程]; TP13 [自动控制理论];
学科分类号
070104 ;
摘要
The solvability of the coupled Riccati differential equations appearing in the differential game approach to the formation control problem is vital to the finite horizon Nash equilibrium solution. These equations(if solvable) can be solved numerically by using the terminal value and the backward iteration. To investigate the solvability and solution of these equations the formation control problem as the differential game is replaced by a discrete-time dynamic game. The main contributions of this paper are as follows.First, the existence of Nash equilibrium controls for the discretetime formation control problem is shown. Second, a backward iteration approximate solution to the coupled Riccati differential equations in the continuous-time differential game is developed.An illustrative example is given to justify the models and solution.
引用
收藏
页码:1233 / 1242
页数:10
相关论文
共 50 条